scholarly journals Effect of Municipal Solid Waste Disposal on the Engineering Properties of Soil from a Non-Engineered Landfill

The presents study showed the effect of open dumping on soil characteristics and biodegradation settlement analysis of soil in non-engineered landfill. The contaminated soil is referred to as waste soil which has different settlement rates due to the various categories and complex characteristics of waste. The degradation of waste causing percolation of leachate into soil affecting the strength and stability of soil. This paper includes the analysis of geotechnical properties and settlement analysis of waste soil and its comparison was done with natural soil. The geochemical analysis was carried out by Energy Dispersive X- Ray Spectroscopy (EDX) and Scanning Electron Microscopy (SEM). The elemental analysis of soil exhibited presence of high oxygen and silica content in uncontaminated soil. The analysis depicted that specific gravity, maximum dry density (MDD), permeability and California bearing ratio (CBR) showed decreasing trend variation for polluted soil. It was observed that cohesion for contaminated soil was found to be increased thereby increasing the shear strength of soil. Additionally, temperature, pH and moisture content hold a significant position for assessing the settlement. The settlement of soil due to biodegradation of MSW is estimated using empirical mathematical model for dump site depending upon pH, moisture content and temperature. Additionally, settlement is evaluated keeping in view the settlement due to biodegradation of MSW on soil, which further helped in determination of the suitability of the site for the construction and other recreational purposes.

The aim of the present study is to determine the physical and geotechnical characteristics of municipal solid waste (MSW) from an open dump site located in Una town, Himachal Pradesh (India) for the analysis of settlement and structural stability of landfill. Degraded waste was tested for different time intervals ranging from 6 months to 6 years. The physical characterization and the geotechnical tests were performed to determine the composition and the engineering properties of MSW respectively. The presence of moisture content in the fresh waste was 49.5±1.05% but for the degraded (or old) waste it varied between 39.8 to 51.6%. The specific gravity of fresh and old waste varied between 1.83±0.05 and 1.85 for 6 months old waste and 2.28 for 5-6 years old degraded waste respectively. The maximum dry density (MDD) was observed to be 4.28 kN/m2 for fresh waste at the optimum moisture content (OMC) of 78.1% and 4.47 kN/m3 for 6 months old waste and 6.25 kN/m3 for the degraded waste of 5-6 years at 80.2, 85.4% of OMC respectively. The hydraulic conductivity (k) of MSW was found to be decreasing with the degradation of MSW and the overburden pressure whereas the shear strength increased along with the degradation of the waste. The cohesion (c) and angle of internal friction (φ) increased respectively from 31.2 kPa(fresh) to 38 kPa(degraded) and 14° to 22° with the increase in waste degradation. The compression ratio of fresh waste was within the ranges of 0.19-0.29 and for degraded MSW it varied between 0.12 for 6 months old waste and 0.17 for 5-6 years old degraded waste respectively.


2020 ◽  
Vol 3 (3b) ◽  
pp. 222-239
Author(s):  
E Vincent ◽  
P Dominic ◽  
MM Kure

Due to failures of Civil Engineering structures in Jos and its Environs, Geotechnical parameters of Lateritic soils were carried out in order to determine its engineering properties for civil engineering construction. The methods involved are; reconnaissance survey, site works, laboratory tests based on British Standard (BS) methods and interpretation of the results. The laboratory test of the soils revealed that the Atterberg limit; Liquid limit (LL) ranged from 33.0% to 45.0%, Plastic limit (PL) from 16.23% to 26.37%, and Plasticity index (PI) from 8.63% to 22.67%. The percentage passing from the Sieve analysis ranges from 31.62% to 67.66%. The cohesive strength (c) and angle of internal friction (ø) from direct shear test ranged from 13KN/m2 to 24KN/m2 and 9° to 26°. The values of the Total settlement (Pc) from the Consolidation test ranged from 0.0005m to 0.0019m, Soil pH from 5.2 to 7.8, Specific gravity (SG) from 2.57 to 2.73 and Natural Moisture Content (NMC) from 8.18% to 46.36%. From the compaction test; the Optimum Moisture Content (OMC) ranged from 15.22% to 20.60% and Maximum Dry Density (MDD) from 1.62g/cm3 to 1.84g/cm3. The California Bearing Ratio (CBR) test for the soaked soils ranged from 21.0% to 93.0% and Un-soaked values from 50.75% to 96.61%. The findings reveal that; the geology of the area can be largely classified into granites (Biotite-microgranite, N’gell biotite-granite, Jos-biotite-granite and Aplo-pegmatitic granite-gneiss) and laterites. The geotechnical parameters of the soil are characteristically fair to poor, the strength and deformation of the soil reveals that it can mostly be used as a sub-base materials. The soil is classified as silty-clay, and the area need to be stabilized with cement, sand and gravel before carry civil engineering constructions. The results obtained will serve as base-line information for civil engineering construction in the study area in other to avoid structural damage.


2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Anigilaje B Salahudeen ◽  
Ja’afar A Sadeeq

The study investigate the suitability of subgrade soil in Baure Local Government Area of Kastina State Nigeria for road construction. The strength properties of the  subgrade was improved using lime and cement. Several analysis including the particle size distribution, specific gravity, Atterberg limits, compaction characteristics, unconfined compressive strength and California bearing ratio tests were performed on natural and lime/cement treated soil samples in accordance with BS 1377 (1990) and BS 1924 (1990) respectively. Soil specimens were prepared by mixing the soil with lime and cement in steps of 0, 3, 6, and 9% by weight of dry soil in several percentage combinations. The Atterberg limits of the weak subgrade soils improved having a minimum plasticity index value of 5.70 % at 3%Lime/6%Cement contents. The maximum dry density (MDD) values obtained showed a significant improvement having a peak value of 1.66 kN/m3 at 9%Lime/9%Cement contents. Similarly, a minimum value of 18.50 % was observed for optimum moisture content at 9%Lime/9%Cement contents which is a desirable reduction from a value of 25.00 % for the natural soil. The unconfined compressive test value increased from 167.30 kN/m2 for the natural soil to 446.77 kN/m2 at 9%Lime/9%Cement contents 28 days curing period. Likewise, the soaked California bearing ratio values increased from 2.90 % for the natural soil to 83.90 % at 9%Lime/9%Cement contents. Generally, there were improvements in the engineering properties of the weak subgrade soil when treated with lime and cement. However, the peak UCS value of 446.77 kN/m2 fails to meet the recommended UCS value of 1710 KN/m2 specified by TRRL (1977) as a criterion for adequate stabilization using Ordinary Portland Cement.            Keywords: Weak subgrade soil, Lime, Cement, Atterberg limits, Maximum dry density, Optimum moisture content, Unconfined compressive strength, California bearing ratio


2014 ◽  
Vol 507 ◽  
pp. 353-360 ◽  
Author(s):  
Amiruddin Ismail ◽  
Mojtaba Shojaei Baghini ◽  
Mohamed Rehan Karim ◽  
Foad Shokri ◽  
Ramez A. Al-Mansob ◽  
...  

Cement-Treated Base (CTB) is a non-conventional method used in road bases materials to improve its engineering properties due to the hardening of cement when moisture is present and extends the period of curing times. This study investigates the effects of cement additive on properties of base layer using laboratory mechanistic evaluation of stabilized soil mixtures. Laboratory tests conducted were Unconfined Compressive Strength (UCS), Indirect Tension test for Resilient Modulus (ITRM) and Flexure Strength (FS) tests. The results revealed that by adding Portland cement, the mechanical properties of the mixture have improved where the UCS is found to be an important quality indicator. In addition, the variables that influenced these tests, which are cement content, curing time, moisture content, and dry density, play important role to determine the performance of CTB. This paper presents the finding of a correlation conducted to analyse the influences of these variables using regression and ANOVA to establish significant models with the aim of predicting the strength base on mixture parameters. Keywords: Cement-Treated Base, Unconfined Compressive Strength, Indirect Tension test for Resilient Modulus, Flexure Strength, Moisture Content, Dry Density, Regression Analysis.


2021 ◽  
Vol 15 (1) ◽  
pp. 360-369
Author(s):  
Monther Abdel Hadi ◽  
Ibrahim Khliefat ◽  
Nafeth Abdelhadi ◽  
Nidhal Saada

Introduction: Jordan is awarded huge areas in the north and western part of the country in which brown and green clay is dominant. This research focuses on the problems and behaviour of the green clay only. The main problem of the green clay is its high swelling pressure which is the main cause of excessive settlement and wall cracks in buildings, especially during the wet season. Methods: This study aims to investigate the engineering properties and behaviour of the green clay deposits in the Amman area, which will serve as a guide for both geotechnical and structural engineers when preparing the foundation design. Results: Based on the consolidation test, the investigated green clay showed high swelling pressure of 3.11 kg/cm2, liquid limit (LL) of 73%, plasticity index (PI) of 40%, the shrinkage limit (SL) of 12%, and liquidity index (LI) of 0.125. The moisture content at saturation is 35.14%, while the natural moisture content is 28%, dry density is 1407 kg/m3, cohesion (C) is 0.20 kg/cm2 and unconfined compressive strength is 1.05 kg/cm2. The XRD results of the clay size fraction have confirmed the presence of the expansive clay mineral smectite as the essential clay mineral together with kaolinite. Results provide a general understanding of the behaviour and properties of the green clay, and the regression analysis showed good correlations between the liquid limit and initial moisture content with the compression index and also between the initial void ratios with the swelling index. Conclusion: Changes in the volume are due to the unsaturation level of clay when provided with initial water content.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Teng Yang ◽  
Jiaqi Zhang ◽  
Xiao Zhang ◽  
Qingsong Zhang ◽  
Zhanchao Yin

Different from sand and clay, loess has special engineering properties; hence, existing soil grouting theories are not suitable for the disaster treatment of shallow loess tunnels. In this study, a fine grouting reinforcement test system was developed, and the Yuhan Road tunnel overlying loess was used as the injection medium. An orthogonal test based on slurry dry density, moisture content, water-to-cement ratio, and grouting pressure was conducted. Results revealed that the loess samples have high integrity after grouting, and the cohesion and compressive strength improved significantly. The stress-strain curve showed that the strengthened samples have greater ultimate and residual strengths than samples before grouting. Through a range analysis, it was determined that water-to-cement ratio and moisture content are the main factors affecting loess cohesion and compressive strength. Therefore, a comprehensive test of the water-to-cement ratio and moisture content as a single variable was conducted. It was found that their influence on loess cohesion and compressive strength is not a single linear relationship but a combined balance. To characterize the joint effect of water in loess and in slurry on reinforcement, the concept of a comprehensive water-to-cement ratio is proposed, and the cohesion and compressive strength curves with respect to this ratio were drawn. An optimal comprehensive water-to-cement ratio, which corresponds to the maximum cohesion or compressive strength, was found. Based on this ratio, we further propose a method to calculate the water-to-cement ratio of slurry and suitable grouting amount for the Yuhan Road tunnel reinforcement project, in which all solution parameters can be measured via field tests. In the project, a surface layered grouting scheme, based on the optimal comprehensive water-to-cement ratio, was designed. After grouting, loess strength was improved significantly, permeability was reduced greatly, and the overall reinforcement effect was suitable; these results provide a reference for similar projects.


2016 ◽  
Vol 53 (2) ◽  
pp. 314-325 ◽  
Author(s):  
Yaolin Yi ◽  
Kaiwen Lu ◽  
Songyu Liu ◽  
Abir Al-Tabbaa

A reactive magnesia (MgO) was used to stabilize a natural soil; the MgO-stabilized soil was subjected to forced carbonation with pressurized gaseous CO2 in a triaxial cell set-up. The change of physical properties, including bulk density, moisture content, dry density, specific gravity, and porosity, of the stabilized soil during carbonation was studied. The mechanical and microstructural properties of the carbonated MgO-stabilized soil were also investigated through unconfined compressive strength (UCS) test, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and mercury intrusion porosimetry (MIP). The results indicated that the carbonation of MgO-stabilized soil consumed CO2 and water, and produced expansive carbonation products; this consequently increased the dry density, and reduced the moisture content, specific gravity, and porosity of the stabilized soil. After being carbonated for only 1.5 h, the MgO-stabilized soil yielded remarkable strength, with UCS higher than that of the 28 day ambient cured Portland cement–stabilized soil, mainly due to the high binding effect of carbonation products and the low porosity of carbonated MgO-stabilized soil. The carbonated MgO-stabilized soil achieved a high degree of carbonation in a few hours (≤12 h), with the maximum CO2/MgO ratio in a range of 0.76–1.07.


10.29007/8gxd ◽  
2018 ◽  
Author(s):  
Rima Dave ◽  
Ketan Timani ◽  
Priti Mehta

The sub grade is a layer of natural soil, prepared to receive the layers of pavement. The thickness of pavement depends upon the properties of sub grade. Sub grade should be strong enough to take up the stresses imposed due to loads with out shear failure and excessive deformation. Sub grade soil strength is evaluated in terms of California Bearing Ratio and is used for design of flexible pavement. It can be performed both in the laboratory and field. The CBR test is laborious and time consuming, even though use of CBR as a performance parameter is widely acknowledged. Also it is very difficult to prepare sample at desired in situ density for laboratory testing. The CBR value depends on factors like particle fines, plasticity index, maximum dry density and optimum moisture content. The fine particles have engineering defect and its CBR value is low. This paper presents the effect of fine particles on CBR value. For the laboratory investigation, specimens were fabricated at optimum moisture content and maximum dry density by heavy compaction with varying proportion of sand, silt-clay and fine gravel mixtures. The samples were soaked in water for four days to simulate highly unfavorable condition. Correlation coefficient between fine particles and laboratory CBR values are obtained. Various linear relationships between index properties and CBR of the samples are investigated using linear regression analysis. Analysis of the experimental data indicated that there exist a good correlation among the measured value and predicted value of CBR


2020 ◽  
Vol 26 (11) ◽  
pp. 150-169
Author(s):  
Tavga Aram Abdalla ◽  
Nihad Bahaaldeen Salih

Cohesive soils present difficulties in construction projects because it usually contains expansive clay minerals. However, the engineering properties of cohesive soils can be stabilized by using various techniques. The research aims to elaborate on the influences of using hydrated lime on the consistency, compaction, and shear strength properties of clayey soil samples from Sulaimnai city, northern Iraq. The proportions of added hydrated lime are 0%, 2.5%, 5%, 7.5% and 10% to the natural soil sample. The results yielded considerable effects of hydrated lime on the engineering properties of the treated soil sample and enhancement its strength. The soil's liquid limit, plasticity index, and optimum moisture content were decreased with the increase of hydrated lime percent. The soil's other geotechnical properties such as plastic limit, maximum dry density, and unconfined compressive strength were increased with the hydrated lime content increase. The oedometer test results produced a notable decrease in the compressibility characteristics of the lime-treated soil sample. Hence, hydrated lime is successfully contributed and can be considered as an effective material to improve the strength, compressibility, and consistency properties of the cohesive soils in Sulaimani city.


Author(s):  
Anand J. Puppala ◽  
Louay N. Mohammad ◽  
Aaron Allen

Lime stabilization is often used to treat subgrade soils when they are soft and cohesive in nature. A study was conducted to investigate the engineering behavior, including the resilient and strength behaviors, of a lime-treated subgrade soil. The lime treatment procedure was adapted from the specifications of the Louisiana Department of Transportation and Development. Silty clay, a soil often found in Louisiana subgrades, is used as a base soil. A summary of various engineering properties of a lime-treated soil from resilient modulus, unconfined compression strength, and California bearing ratio (CBR) tests conducted at five moisture content and dry density levels is provided. Tests were also performed on the raw soil without lime treatment, and these results were compared with those of tests with the lime-treated soil. The comparisons indicate that the present lime treatment method results in an increase in strength and resilient modulus properties and a decrease in plasticity characteristics and plastic strains. A regression model with three constants was used to analyze the resilient modulus test results. The model constants are presented as functions of soil properties. Resilient modulus correlations that use either CBR or unconfined compression strength, moisture content, dry density, degree of compaction, and stresses as dependent attributes are developed.


Sign in / Sign up

Export Citation Format

Share Document