scholarly journals Mathematical Modelling of Electric Discharge Machining of Al (6351)-SiC-B4C Hybrid Composite

The Electric Discharge Machining (EDM) has emerged as one of the major machining method for the machining of hard-to- machine materials and composites. This paper aims at creating a mathematical model for the machining of the Al(6351)-SiC-B4C composites based on the experimental data and compare the same to identify the level of errors between the mathematical model and the experimental results. This paper was aimed as an attempt to develop a mathematical model for the output parameters viz. Electrode Wear ratio and Surface roughness based on the input parameters viz. current, pulse-on-time, pulse duty-factor and gap voltage.

2021 ◽  
Vol 1026 ◽  
pp. 28-38
Author(s):  
I. Vishal Manoj ◽  
S. Narendranath ◽  
Alokesh Pramanik

Wire electric discharge machining non-contact machining process based on spark erosion technique. It can machine difficult-to-cut materials with excellent precision. In this paper Alloy-X, a nickel-based superalloy was machined at different machining parameters. Input parameters like pulse on time, pulse off time, servo voltage and wire feed were employed for the machining. Response parameters like cutting speed and surface roughness were analyzed from the L25 orthogonal experiments. It was noted that the pulse on time and servo voltage were the most influential parameters. Both cutting speed and surface roughness increased on increase in pulse on time and decrease in servo voltage. Grey relation analysis was performed to get the optimal parametric setting. Response surface method and artificial neural network predictors were used in the prediction of cutting speed and surface roughness. It was found that among the two predictors artificial neural network was accurate than response surface method.


Author(s):  
Banwait S.S. ◽  
◽  
Sanjay S ◽  

The present work explains the machining of Titanium alloy using Electric Discharge Machining & Electro-Chemical Machining. This work aims to analyze the role of Current, Pulse on Time, Voltage and hence optimize the Material Removal Rate and Surface Roughness in Electric Discharge Machining. In the same way, it also aims to analyze the role of Concentration, Feed, and Voltage and optimize the Material Removal Rate and Surface Roughness in Electro-Chemical Machining. The various approaches like Taguchi & Analysis of Variance are executed to study the performance characteristics of the input parameters on the output parameters. The whole work is followed by a validation test and hence confirming the obtained values. Thus, it reveals the acceptability of the model. The work tells that Material Removal Rate and Surface Finish effect is more in Electro-Chemical Machining as compared to Electric Discharge Machining. For Material Removal Rate, Current and Feed are more responsible parameters for Electric Discharge Machining. In the same way; electrolyte concentration and Feed are more responsible parameters for Electro-Chemical Machining respectively.


Author(s):  
K Venkata Rao ◽  
L Ratna Raju ◽  
Chiluka Kiran Kumar

Surface roughness and kerf width are the two challenging quality characteristics in wire cut electric discharge machining (WEDM) of Ti-6Al-4V to improve accuracy in machining. In this study, effect of wire displacement on the kerf width and surface roughness is studied in WEDM of Ti-6Al-4V. Mechanistic models are developed for kerf width and surface roughness using amplitude and frequency of wire vibration in X and Y directions. Amplitude and frequency of wire displacement in X and Y directions are directly measured using an accelerometer at different working conditions. The estimated kerf width and surface roughness are compared with the experimental results and the average error between them is found to be 3.7 and 4.2% respectively. The results showed that the current and wire tension have significant effect on the wire displacement. The kerf width and surface roughness are effected more by the applied current and the metal removal rate is effected by current and pulse on time. A working condition with 3.3 A of current, 15 N of wire tension, 14.4 µs of pulse on time and 41.5 µs of pulse off time is found to be an optimum working condition.


2018 ◽  
Vol 172 ◽  
pp. 04007 ◽  
Author(s):  
K. Umanath ◽  
D. Devika

The aim of this research work is to analyze the significant of process variables and find the optimum process variables in electric discharge machining (EDM) of Titanium alloy (Ti-6Al-4V) .The variables considered are peak current, pulse-on-time and pulse-off-time where as the responses are Material Removal Rate(MRR) and Surface Roughness(SR). MITSUBISHI EA8 spark erosion machine is employed for this work and copper tungsten electrode of ∅14 mm is used in experimental trials. The experimental runs are done based on Taguchi L27 orthogonal array. The signal-to-noise ratio, the analysis of variance (ANOVA), regression analysis and Genetic algorithm are used to determine the optimal levels of machining parameters on Metal removal rate and Surface roughness. Confirmation tests also done with the optimal levels of machining variables. Comparison of Taguchi’s and Genetic algorithm were employed to analyze the effective optimum value.


Author(s):  
G. Ramanan ◽  
J. Edwin Raja Dhas ◽  
M. Ramachandran

In automobile industries, usage of unconventional machining is increased due to their precision and accuracy. This research work is planned to upgrade the Wire Electric Discharge Machining (WEDM) process parameters by considering the impact of discharge current, pulse on time, pulse off time and servo speed rate. Tests have been led with these parameters for the measurement of metal removal rate and surface roughness for each of the trial run. This information has been used to fit a quadratic numerical model. Predicted information has been used as a graphical representation for demonstrating the impact of the parameters on chose reactions. Predicted information given by the models has been utilized as a part of an ideal parametric mix to accomplish the unrealistic yield of the procedure. Response surface method with grey relational analysis has been utilized for enhancement. The ideal value has been checked to the predicted value from the confirmation tests.


2016 ◽  
Vol 693 ◽  
pp. 837-842
Author(s):  
Fu Yi Xia ◽  
Li Ming Xu ◽  
De Jin Hu

A novel principle of cup wheel grinding of rotating concave quadric surface was proposed. The mathematical model of machining process was established to prove the feasibility of precision grinding of rotating concave paraboloid based on the introduced principle. The conditions of non-interference grinding of concave paraboloid were mathematically derived. The processing range and its influence factors were discussed. The trajectory equation of abrasive particle was concluded. Finally, the math expressions of numerical controlled parameters was put forward in the process of grinding of the concave paraboloid.


1999 ◽  
Author(s):  
Mahmut D. Mat ◽  
Yüksel Kaplan ◽  
Olusegun J. Ilegbusi

Abstract Subcooled boiling of water in a vertical pipe is numerically investigated. The mathematical model involves solution of transport equations for vapor and liquid phase separately. Turbulence model considers the turbulence production and dissipation by the motion of the bubbles. The radial and axial void fractions, temperature and velocity profiles in the pipe are calculated. The estimated results are compared to experimental data available in the literature. It is found that while present study satisfactorily agrees with experimental data in the literature, it improves the prediction at lower void fractions.


Author(s):  
A I Ryazanov

This paper describes the aerohydrodvnamics of processes in chambers of Gorlov's hydro-pneumatic power system. The mathematical model is developed to determine the main parameters of the processes: water and air velocities, air pressure in the chamber, the periods of time required to fill and empty the chambers and the output of energy during the cycle. The results obtained are in agreement with experimental data and model tests.


Sign in / Sign up

Export Citation Format

Share Document