Interaction of elements in carbon-graphite—Al—Mg—Zn—Cu melt system under combined action of temperature and pressure

Author(s):  
N.Yu. Miroshkin ◽  
V.A. Gulevsky ◽  
S.N. Tsurikhin ◽  
A.I. Bogdanov ◽  
L.M. Gurevich ◽  
...  

Redistribution of chemically active elements is established on its inner surface of pores and at the interface with the alloy when impregnating carbon-graphite framework with Al—Mg—Zn—Cu alloy at temperature of 800 °C under pressure of up to 3 MPa. In this case, change in the solubility of melt elements in aluminum is possible as result of the combined action of temperature and pressure in the impregnation process, created due to the difference in the coefficients of thermal and thermal expansion of the matrix alloy, and the material of the impregnation device during impregnation. Titanium compounds are found in the pores filled with metal that are not added to the matrix alloy, but are formed as result of the contact of the matrix alloy melt with the walls of the impregnation device.

2018 ◽  
Vol 53 (15) ◽  
pp. 2033-2046 ◽  
Author(s):  
Biljana Bobić ◽  
Aleksandar Vencl ◽  
Jovana Ružić ◽  
Ilija Bobić ◽  
Zvonko Damnjanović

Particulate nanocomposites with the base of ZA27 alloy were synthesized using an innovative route, which includes mechanical milling and compocasting. Scrap from the matrix alloy and ceramic nanoreinforcements were mechanically milled using the ball-milling technique, which led to the formation of composite microparticles. The use of these particles in the compocasting process provided better wettability of ceramic nanoreinforcements in the semi-solid metal matrix, which resulted in a relatively good dispersion of the nanoreinforcements in nanocomposite castings. The presence of nanoreinforcements led to the grain refinement in the matrix of nanocomposites. The mechanical properties of the synthesized nanocomposites are improved and compared with the properties of the metal matrix. The observed increase in the hardness of nanocomposites with Al2O3 nanoreinforcements (20–30 nm) was 6.5% to 10.8%, while the yield strength of these nanocomposites has increased by 12.2% to 23.2%. The hardness and compressive yield strength of the nanocomposites with Al2O3 nanoparticles (100 nm) increased by 1.7% to 8.0% and 2.3% to 8.3%, respectively. The increase in hardness of the nanocomposites with SiC nanoparticles (50 nm) was 11.5% to 20.6%, while the increase in the yield strength was 15.6% to 24.5%. The greatest contribution to the overall strengthening in the synthesized nanocomposites is the result of increased dislocation density due to the difference in coefficients of thermal expansion for the matrix alloy and nanoreinforcements.


Author(s):  
V. A. Gulevsky ◽  
N. Yu. Miroshkin ◽  
S. N. Tsurikhin ◽  
O. Yu. Gundrov

The process of forming a composite material carbon - graphite-aluminum alloy by impregnation of a porous frame AG-1500 is studied. The technology of filling the open porosity of carbon graphite with a metal melt in a device for impregnation in the mode of constant heating of the furnace is described. The method of applying a protective coating to the inner surface of the pores is shown. It is possible to seal the matrix alloy AK12 in the pores of AG-1500 with lead. It is shown that such processing allows to compact the aluminum alloy and modify it due to the comprehensive pressure of the lead alloy.


2019 ◽  
Vol 10 (2) ◽  
pp. 149-161 ◽  
Author(s):  
Praveen Kumar Bannaravuri ◽  
Anil Kumar Birru

Purpose The purpose of this paper is to determine the use of BLA along with SiC as economical reinforcements to enhance the mechanical behavior of hybrid composite. The purpose of this research is the development of cost-effective aluminum hybrid metal matrix composites. Design/methodology/approach The present research work investigation evaluated the mechanical properties of Al-4.5%Cu alloy, Al-4.5Cu/10SiC, Al-4.5Cu/10SiC/2BLA and Al-4.5Cu/10SiC/4BLA composites by the Stir casting method. The fabricated composites were analyzed using optical microscopy (OM), scanning electron microscopy (SEM), and hardness and tensile test. Findings The microstructure modification with the addition of reinforcement particles in the matrix alloy and clear interface in between matrix and particles are observed. The density of the composite increased with the addition of SiC and decreased with the addition of BLA in comparison with that of matrix alloy. The hardness and tensile strength of the single-reinforced composite and hybrid composites improved with the addition of reinforcement particles. The strengthening of composites was due to load-bearing capacity of reinforcement particles over the matrix alloy and increased dislocation density of composites materials. The tensile failure mechanism of the composites is reveled with SEM analysis. Practical implications The papers reports the development of cost-effective and light weight aluminum hybrid composites with remarkable enhancement in the mechanical and tribological properties with the addition of BLA as economical reinforcement along with SiC. Originality/value The density, hardness and tensile values of fabricated aluminium composites were presented in this paper for the use in the engineering applications where the weight and cost are consider as a primary factors.


2021 ◽  
Vol 1026 ◽  
pp. 19-27
Author(s):  
Kai Wen ◽  
Hong Wei Liu

The fatigue crack growth of Al-Zn-Mg-Cu alloy can be adjusted by different aging treatments. In the present work, a high Zn-containing Al-Zn-Mg-Cu alloy was treated by single, double and triple stage aging treatments and typical T6, T79 and T77 states were selected by tensile properties. Fatigue crack growth under these aging states was tested and related fracture morphology and precipitation characteristics were observed. The results showed that fatigue crack growth resistance for the alloy was T6<T79<T77. The corresponding fracture morphology also showed the difference of fatigue striations and the measurement of them provided an additional evidence. The precipitation proved that the alloy with T6 state possessed GPI zone, GPII zone and η' phase while that for T76 state was GPII zone, η' phase and η phase. As for the T77 state, the precipitate types were GPII zone and η' phase. The matrix precipitate for T6 state was smaller and denser than that for T79 and T77 states while that for T77 state possessed a dense distribution than that for T79 state. The measurement of precipitate size distribution also proved it. The grain boundary precipitates for T79 and T77 states were similar, which had a more intermittent distribution than that for T6 state.


2016 ◽  
Vol 849 ◽  
pp. 402-408
Author(s):  
Min Juan Wang ◽  
Hao Huang ◽  
Si Qing Li ◽  
Hu Li ◽  
Chuan Xie ◽  
...  

Continuous unidirectional SiCf/TC17 composite has been fabricated by hot isostatic pressing (HIP). After consolidation, the TC17 canning (the unreinforced ambient portion of the specimen) showed an equiaxed microstructure, whereas the matrix of SiCf/TC17 composite (deposited on the continuous SiC fibers by magnetron sputtering) exhibited a typical lamellar structure. In this work, the heat treatments under different condition, XRD, SEM and WDS have been employed to characterize and analyze the microstructural difference. The results indicated that the difference in β transus temperature (Tβ) between the canning and matrix of TC17 alloy induced the microstructural diversity. The introduction of C element (an intensive α stabilizing element) into the matrix alloy may be ascribed to the diffusion of carbon layer at the surface of SiC fiber. As a result, Tβ of matrix TC17 alloy increased to above 1000 °C, much higher than that of the canning TC17 alloy (890 °C). The investigation of microstructure difference reveals the microstructure evolution in SiCf/TC17 composite, which can provide an effective reference for following processing design.


Author(s):  
R.A. Herring

Rapid thermal annealing (RTA) of ion-implanted Si is important for device fabrication. The defect structures of 2.5, 4.0, and 6.0 MeV As-implanted silicon irradiated to fluences of 2E14, 4E14, and 6E14, respectively, have been analyzed by electron diffraction both before and after RTA at 1100°C for 10 seconds. At such high fluences and energies the implanted As ions change the Si from crystalline to amorphous. Three distinct amorphous regions emerge due to the three implantation energies used (Fig. 1). The amorphous regions are separated from each other by crystalline Si (marked L1, L2, and L3 in Fig. 1) which contains a high concentration of small defect clusters. The small defect clusters were similar to what had been determined earlier as being amorphous zones since their contrast was principally of the structure-factor type that arises due to the difference in extinction distance between the matrix and damage regions.


Author(s):  
P B Parejiya ◽  
B S Barot ◽  
P K Shelat

The present study was carried out to fabricate a prolonged design for tramadol using Kollidon SR (Polyvinyl acetate and povidone based matrix retarding polymer). Matrix tablet formulations were prepared by direct compression of Kollidon SR of a varying proportion with a fixed percentage of tramadol. Tablets containing a 1:0.5 (Drug: Kollidon SR) ratio exhibited a rapid rate of drug release with an initial burst effect. Incorporation of more Kollidon SR in the matrix tablet extended the release of drug with subsequent minimization of the burst effect as confirmed by the mean dissolution time, dissolution efficiency and f2 value. Among the formulation batches, a direct relationship was obtained between release rate and the percentage of Kollidon SR used. The formulation showed close resemblance to the commercial product Contramal and compliance with USP specification. The results were explored and explained by the difference of micromeritic characteristics of the polymers and blend of drug with excipients. Insignificant effects of various factors, e.g. pH of dissolution media, ionic strength, speed of paddle were found on the drug release from Kollidon-SR matrix. The formulation followed the Higuchi kinetic model of drug release. Stability study data indicated stable character of Batch T6 after short-term stability study.


2020 ◽  
Vol 72 (10) ◽  
pp. 1153-1158 ◽  
Author(s):  
Yafei Deng ◽  
Xiaotao Pan ◽  
Guoxun Zeng ◽  
Jie Liu ◽  
Sinong Xiao ◽  
...  

Purpose This paper aims to improve the tribological properties of aluminum alloys and reduce their wear rate. Design/methodology/approach Carbon is placed in the model at room temperature, pour 680°C of molten aluminum into the pressure chamber, and then pressed it into the mold containing carbon felt through a die casting machine, and waited for it to cool, which used an injection pressure of 52.8 MPa and held the same pressure for 15 s. Findings The result indicated that the mechanical properties of matrix and composite are similar, and the compressive strength of the composite is only 95% of the matrix alloy. However, the composite showed a low friction coefficient, the friction coefficient of Gr/Al composite is only 0.15, which just is two-third than that of the matrix alloy. Similarly, the wear rate of the composite is less than 4% of the matrix. In addition, the composite can avoid severe wear before 200°C, but the matrix alloy only 100°C. Originality/value This material has excellent friction properties and is able to maintain this excellent performance at high temperatures. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-10-2019-0454/


2011 ◽  
Vol 287-290 ◽  
pp. 2916-2920
Author(s):  
Chun Yan Ban ◽  
Peng Qian ◽  
Xu Zhang ◽  
Qi Xian Ba ◽  
Jian Zhong Cui

The resistance of Al-21%Cu alloy under no magnetic field, DC magnetic field and AC magnetic field from liquid to solid was measured by a four-probe method. The difference of resistance versus temperature curves (R-T curves) was analyzed. It is found that the R-T curves of Al-21%Cu alloy are monotone decreasing and have two obvious turning points. Under DC magnetic field, the liquidus and solidus temperatures of the alloy both decrease, while under AC magnetic field, the liquidus and solidus temperatures both increase. There is a good agreement between the microstructure of quenching sample and R-T curves. The mechanism of the effect of magnetic fields was discussed.


Transient creep following stress reductions has been analysed by the method described by McLean (1980) to determine the friction stress σ 0 as a function of temperature and directional solidification conditions for the γ-γ'-Cr 3 Cr 2 in-situ composite and for the γ-γ' matrix alloy. These values of σ 0 are identical to the flow stresses at creep strain rates and can be identified with the sums of the barriers to dislocation motion through the matrix by climb around γ'-particles and Orowan bowing between the carbide fibres. The friction stress and the kinetics of deformation of the composite are determined by the matrix behaviour, whereas its creep strength depends on the distribution of stress between fibre and matrix. When the steady-state creep behaviour of γ-γ'-Cr 3 C 2 is analysed by using the usual power law description in terms of the effective stress σ — σ 0 , rather than the applied stress σ, the stress exponent is ca 4 and the activation energy is similar to the activation energy of self-diffusion for nickel. The results provide strong evidence for the operation of recovery-creep in both the composite and matrix alloys.


Sign in / Sign up

Export Citation Format

Share Document