scholarly journals Therapeutic Agents Targeting at AGE-RAGE Axis for the Treatment of Diabetes and Cardiovascular Disease: A Review of Clinical Evidence

2017 ◽  
Vol 1 (1) ◽  
Author(s):  
Cheng Hong Sheng ◽  
Ton So Ha ◽  
Kadir Khalid Abdul
2020 ◽  
Vol 26 (42) ◽  
pp. 5468-5487 ◽  
Author(s):  
Ankita Sood ◽  
Bimlesh Kumar ◽  
Sachin Kumar Singh ◽  
Pankaj Prashar ◽  
Anamika Gautam ◽  
...  

Flavonoids are secondary metabolites that are widely distributed in plants. These phenolic compounds are classified into various subgroups based on their structures: flavones, flavonols, isoflavones, flavanones, and anthocyanins. They are known to perform various pharmacological actions like antioxidant, anti-inflammatory, anticancer, antimicrobial, antidiabetic and antiallergic, etc. Diabetes is a chronic progressive metabolic disorder that affects several biochemical pathways and leads to secondary complications such as neuropathy, retinopathy, nephropathy, and cardiomyopathy. Among them, the management of diabetic neuropathy is one of the major challenges for physicians as well as the pharmaceutical industries. Naturally occurring flavonoids are extensively used for the treatment of diabetes and its related complications due to their antioxidant properties. Moreover, flavonoids inhibit various pathways that are involved in the progression of diabetic neuropathy like the reduction of oxidative stress, decrease in glycogenolysis, increase glucose utilization, decrease in the formation of advanced glycation end products, and inhibition of the α-glucosidase enzyme. This review entails current updates on the therapeutic perspectives of flavonoids in the treatment of neuropathic pain. This manuscript explains the pathological aspects of neuropathic pain, the chemistry of flavonoids, and their application in amelioration of neuropathic pain through preclinical studies either alone or in combination with other therapeutic agents.


2015 ◽  
Vol 15 (23) ◽  
pp. 2456-2463 ◽  
Author(s):  
Marilena Antunes-Ricardo ◽  
Janet Gutierrez-Uribe ◽  
Sergio Serna-Saldivar

Author(s):  
Mehmet Akif Camkurt ◽  
Luca Lavagnino ◽  
Xiang Y. Zhang ◽  
Antonio L Teixeira

Abstract Obesity and diabetes are both risk factors and consequences of psychiatric disorders. Glucagon like peptide 1 (GLP-1) receptor agonists such as liraglutide are widely used in the treatment of diabetes and obesity. There are considerable amounts of preclinical studies showing the effects of liraglutide on promotion of neurogenesis, while preventing apoptosis and oxidation. Preliminary clinical evidence has suggested that liraglutide could decrease weight gain, improve cognition and prevent cognitive decline. Accordingly, liraglutide has been regarded as a potential candidate for the management of psychiatric disorders. Herein, we will discuss the association between obesity/diabetes and psychiatric disorders, and the emerging use of liraglutide in psychiatry.


2020 ◽  
Vol 2 (8) ◽  
Author(s):  
Theresa F. Rambaran

AbstractPolyphenols are believed to possess numerous health benefits and can be grouped as phenolic acids, flavonoids or non-flavonoids. Research involving the synthesis of nanopolyphenols has attracted interest in the areas of functional food, nutraceutical and pharmaceutical development. This is in an effort to overcome current challenges which limit the application of polyphenols such as their rapid elimination, low water-solubility, instability at low pH, and their particle size. In the synthesis of nanopolyphenols, the type of nanocarrier used, the nanoencapsulation technique employed and the type of polymers that constitute the drug delivery system are crucial. For this review, all mentioned factors which can influence the therapeutic efficacy of nanopolyphenols were assessed. Their efficacy as anti-diabetic agents was also evaluated in 33 publications. Among these were phenolic acid (1), flavonoids (13), non-flavonoids (17) and polyphenol-rich extracts (2). The most researched polyphenols were quercetin and curcumin. Nanoparticles were the main nanocarrier and the size of the nanopolyphenols ranged from 15 to 333 nm with encapsulation efficiency and drug loading capacities of 56–97.7% and 4.2–53.2%, respectively. The quantity of nanomaterial administered orally ranged from 1 to 300 mg/kg/day with study durations of 1–70 days. Most studies compared the effect of the nanopolyphenol to its free-form and, in all but three cases, significantly greater effects of the former were reported. Assessment of the polyphenol to understand its properties and the subsequent synthesis of its nanoencapsulated form using suitable nanocarriers, polymers and encapsulation techniques can result in effective therapeutic agents for the treatment of diabetes.


2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
Dong Guo ◽  
Yuerong Xu ◽  
Jian Ding ◽  
Jiaying Dong ◽  
Ning Jia ◽  
...  

Despite substantial improvements in therapeutic strategies, cardiovascular disease (CVD) is still among the leading causes of mortality and morbidity worldwide. Exosomes, extracellular vesicles with a lipid bilayer membrane of endosomal origin, have been the focus of a large body of research in CVD. Exosomes not only serve as carriers for signal molecules responsible for intercellular and interorgan communication underlying CVD pathophysiology but also are bioactive agents which are partly responsible for the therapeutic effect of stem cell therapy of CVD. We here review recent insights gained into the role of exosomes in apoptosis, hypertrophy, angiogenesis, fibrosis, and inflammation in CVD pathophysiology and progression and the application and mechanisms of exosomes as therapeutic agents for CVD.


Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1803 ◽  
Author(s):  
Amira Mbarek ◽  
Ghina Moussa ◽  
Jeanne Leblond Chain

Synthetic acyclic receptors, composed of two arms connected with a spacer enabling molecular recognition, have been intensively explored in host-guest chemistry in the past decades. They fall into the categories of molecular tweezers, clefts and clips, depending on the geometry allowing the recognition of various guests. The advances in synthesis and mechanistic studies have pushed them forward to pharmaceutical applications, such as neurodegenerative disorders, infectious diseases, cancer, cardiovascular disease, diabetes, etc. In this review, we provide a summary of the synthetic molecular tweezers, clefts and clips that have been reported for pharmaceutical applications. Their structures, mechanism of action as well as in vitro and in vivo results are described. Such receptors were found to selectively bind biological guests, namely, nucleic acids, sugars, amino acids and proteins enabling their use as biosensors or therapeutics. Particularly interesting are dynamic molecular tweezers which are capable of controlled motion in response to an external stimulus. They proved their utility as imaging agents or in the design of controlled release systems. Despite some issues, such as stability, cytotoxicity or biocompatibility that still need to be addressed, it is obvious that molecular tweezers, clefts and clips are promising candidates for several incurable diseases as therapeutic agents, diagnostic or delivery tools.


Author(s):  
Christian Schulte ◽  
Mahir Karakas ◽  
Tanja Zeller

AbstractmicroRNAs (miRNAs) are well-known, powerful regulators of gene expression, and their potential to serve as circulating biomarkers is widely accepted. In cardiovascular disease (CVD), numerous studies have suggested miRNAs as strong circulating biomarkers with high diagnostic as well as prognostic power. In coronary artery disease (CAD) and heart failure (HF), miRNAs have been suggested as reliable biomarkers matching up to established protein-based such as cardiac troponins (cT) or natriuretic peptides. Also, in other CVD entities, miRNAs were identified as surprisingly specific biomarkers – with great potential for clinical applicability, especially in those entities that lack specific protein-based biomarkers such as atrial fibrillation (AF) and acute pulmonary embolism (APE). In this regard, miRNA signatures, comprising a set of miRNAs, yield high sensitivity and specificity. Attempts to utilize miRNAs as therapeutic agents have led to promising results. In this article, we review the clinical applicability of circulating miRNAs in CVD. We are giving an overview of miRNAs as biomarkers in numerous CVD entities to depict the variety of their potential clinical deployment. We illustrate the function of miRNAs by means of single miRNA examples in CVD.


Sign in / Sign up

Export Citation Format

Share Document