scholarly journals Colorful Subhypergraphs in Kneser Hypergraphs

10.37236/3573 ◽  
2014 ◽  
Vol 21 (1) ◽  
Author(s):  
Frédéric Meunier

Using a $\mathbb{Z}_q$-generalization of a theorem of Ky Fan, we extend to Kneser hypergraphs a theorem of Simonyi and Tardos that ensures the existence of multicolored complete bipartite graphs in any proper coloring of a Kneser graph. It allows to derive a lower bound for the local chromatic number of Kneser hypergraphs (using a natural definition of what can be the local chromatic number of a uniform hypergraph).

2020 ◽  
Vol 20 (02) ◽  
pp. 2050007
Author(s):  
P. C. LISNA ◽  
M. S. SUNITHA

A b-coloring of a graph G is a proper coloring of the vertices of G such that there exists a vertex in each color class joined to at least one vertex in each other color classes. The b-chromatic number of a graph G, denoted by φ(G), is the largest integer k such that G has a b-coloring with k colors. The b-chromatic sum of a graph G(V, E), denoted by φ′(G) is defined as the minimum of sum of colors c(v) of v for all v ∈ V in a b-coloring of G using φ(G) colors. The Mycielskian or Mycielski, μ(H) of a graph H with vertex set {v1, v2,…, vn} is a graph G obtained from H by adding a set of n + 1 new vertices {u, u1, u2, …, un} joining u to each vertex ui(1 ≤ i ≤ n) and joining ui to each neighbour of vi in H. In this paper, the b-chromatic sum of Mycielskian of cycles, complete graphs and complete bipartite graphs are discussed. Also, an application of b-coloring in image processing is discussed here.


10.37236/272 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Dhruv Mubayi ◽  
Sundar Vishwanathan

Consider a graph $G$ with chromatic number $k$ and a collection of complete bipartite graphs, or bicliques, that cover the edges of $G$. We prove the following two results: $\bullet$ If the bipartite graphs form a partition of the edges of $G$, then their number is at least $2^{\sqrt{\log_2 k}}$. This is the first improvement of the easy lower bound of $\log_2 k$, while the Alon-Saks-Seymour conjecture states that this can be improved to $k-1$. $\bullet$ The sum of the orders of the bipartite graphs in the cover is at least $(1-o(1))k\log_2 k$. This generalizes, in asymptotic form, a result of Katona and Szemerédi who proved that the minimum is $k\log_2 k$ when $G$ is a clique.


2021 ◽  
Vol 27 (2) ◽  
pp. 191-200
Author(s):  
K. Kalaiselvi ◽  
◽  
N. Mohanapriya ◽  
J. Vernold Vivin ◽  
◽  
...  

An r-dynamic coloring of a graph G is a proper coloring of G such that every vertex in V(G) has neighbors in at least $\min\{d(v),r\}$ different color classes. The r-dynamic chromatic number of graph G denoted as $\chi_r (G)$, is the least k such that G has a coloring. In this paper we obtain the r-dynamic chromatic number of the central graph, middle graph, total graph, line graph, para-line graph and sub-division graph of the comb graph $P_n\odot K_1$ denoted by $C(P_n\odot K_1), M(P_n\odot K_1), T(P_n\odot K_1), L(P_n\odot K_1), P(P_n\odot K_1)$ and $S(P_n\odot K_1)$ respectively by finding the upper bound and lower bound for the r-dynamic chromatic number of the Comb graph.


2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
Gábor Simonyi ◽  
Gábor Tardos

International audience The local chromatic number of a graph, introduced by Erdős et al., is the minimum number of colors that must appear in the closed neighborhood of some vertex in any proper coloring of the graph. This talk would like to survey some of our recent results on this parameter. We give a lower bound for the local chromatic number in terms of the lower bound of the chromatic number provided by the topological method introduced by Lovász. We show that this bound is tight in many cases. In particular, we determine the local chromatic number of certain odd chromatic Schrijver graphs and generalized Mycielski graphs. We further elaborate on the case of $4$-chromatic graphs and, in particular, on surface quadrangulations.


2012 ◽  
Vol 13 (03n04) ◽  
pp. 1250011 ◽  
Author(s):  
GEORGE QI ◽  
SHENGHAO WANG ◽  
WEIZHEN GU

The chromatic number of a graph G, denoted χ(G) is the minimum number of colors needed to color vertices of G so that no two adjacent vertices share the same color. A functigraph over a given graph is obtained as follows: Let G' be a disjoint copy of a given G and f be a function f : V(G) → V(G'). The functigraph over G, denoted by C(G, f), is the graph with V(C(G, f)) = V(G) ∪ V(G') and E(C(G, f)) = E(G) ∪ E(G') ∪ {uv : u ∈ V(G), v ∈ V(G'), v = f(u)}. Recently, Chen et al. proved that [Formula: see text]. In this paper, we first provide sufficient conditions on functions f to reach the lower bound for any graph. We then study the attainability of the chromatic numbers of functigraphs. Finally, we extend the definition of a functigraph in different ways and then investigate the bounds of chromatic numbers of such graphs.


10.37236/650 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Torsten Mütze ◽  
Reto Spöhel

For any graph $F$ and any integer $r\geq 2$, the online vertex-Ramsey density of $F$ and $r$, denoted $m^*(F,r)$, is a parameter defined via a deterministic two-player Ramsey-type game (Painter vs. Builder). This parameter was introduced in a recent paper [arXiv:1103.5849], where it was shown that the online vertex-Ramsey density determines the threshold of a similar probabilistic one-player game (Painter vs. the binomial random graph $G_{n,p}$). For a large class of graphs $F$, including cliques, cycles, complete bipartite graphs, hypercubes, wheels, and stars of arbitrary size, a simple greedy strategy is optimal for Painter and closed formulas for $m^*(F,r)$ are known. In this work we show that for the case where $F=P_\ell$ is a long path, the picture is very different. It is not hard to see that $m^*(P_\ell,r)= 1-1/k^*(P_\ell,r)$ for an appropriately defined integer $k^*(P_\ell,r)$, and that the greedy strategy gives a lower bound of $k^*(P_\ell,r)\geq \ell^r$. We construct and analyze Painter strategies that improve on this greedy lower bound by a factor polynomial in $\ell$, and we show that no superpolynomial improvement is possible.


Author(s):  
KRISHNAPPA H. K ◽  
N K. SRINATH ◽  
S. Manjunath ◽  
RAMAKANTH KUMAR P

The study of graph labeling has focused on finding classes of graphs which admits a particular type of labeling. In this paper we consider a particular class of graphs which demonstrates Edge Magic Total Labeling. The class we considered here is a complete bipartite graph Km,n. There are various graph labeling techniques that generalize the idea of a magic square has been proposed earlier. The definition of a magic labeling on a graph with v vertices and e edges is a one to one map taking the vertices and edges onto the integers 1,2,3,………, v+e with the property that the sum of the label on an edge and the labels of its endpoints is constant independent of the choice of edge. We use m x n matrix to construct edge magic total labeling of Km,n.


2018 ◽  
Vol 2 (2) ◽  
pp. 82
Author(s):  
K. Kaliraj ◽  
V. Kowsalya ◽  
Vernold Vivin

<p>In a search for triangle-free graphs with arbitrarily large chromatic numbers, Mycielski developed a graph transformation that transforms a graph <span class="math"><em>G</em></span> into a new graph <span class="math"><em>μ</em>(<em>G</em>)</span>, we now call the Mycielskian of <span class="math"><em>G</em></span>, which has the same clique number as <span class="math"><em>G</em></span> and whose chromatic number equals <span class="math"><em>χ</em>(<em>G</em>) + 1</span>. In this paper, we find the star chromatic number for the Mycielskian graph of complete graphs, paths, cycles and complete bipartite graphs.</p>


10.37236/3066 ◽  
2013 ◽  
Vol 20 (1) ◽  
Author(s):  
Zhongyuan Che ◽  
Karen L. Collins

A labeling $f: V(G) \rightarrow \{1, 2, \ldots, d\}$ of the vertex set of a graph $G$ is said to be proper $d$-distinguishing if it is a proper coloring of $G$ and any nontrivial automorphism of $G$ maps at least one vertex to a vertex with a different label. The distinguishing chromatic number of $G$, denoted by $\chi_D(G)$, is the minimum $d$ such that $G$ has a proper $d$-distinguishing labeling. Let $\chi(G)$ be the chromatic number of $G$ and $D(G)$ be the distinguishing number of $G$. Clearly, $\chi_D(G) \ge \chi(G)$ and $\chi_D(G) \ge D(G)$. Collins, Hovey and Trenk have given a tight upper bound on $\chi_D(G)-\chi(G)$ in terms of the order of the automorphism group of $G$, improved when the automorphism group of $G$ is a finite abelian group. The Kneser graph $K(n,r)$ is a graph whose vertices are the $r$-subsets of an $n$ element set, and two vertices of $K(n,r)$ are adjacent if their corresponding two $r$-subsets are disjoint. In this paper, we provide a class of graphs $G$, namely Kneser graphs $K(n,r)$, whose automorphism group is the symmetric group, $S_n$, such that $\chi_D(G) - \chi(G) \le 1$. In particular, we prove that $\chi_D(K(n,2))=\chi(K(n,2))+1$ for $n\ge 5$. In addition, we show that $\chi_D(K(n,r))=\chi(K(n,r))$ for $n \ge 2r+1$ and $r\ge 3$.


Sign in / Sign up

Export Citation Format

Share Document