scholarly journals Domination of the Rectangular Queen's Graph

10.37236/6026 ◽  
2019 ◽  
Vol 26 (4) ◽  
Author(s):  
Sándor Bozóki ◽  
Péter Gál ◽  
István Marosi ◽  
William D. Weakley

The queens graph $Q_{m \times n}$ has the squares of the $m \times n$ chessboard as its vertices; two squares are adjacent if they are in the same row, column, or diagonal of the board. A set $D$ of squares of $Q_{m \times n}$ is a dominating set for $Q_{m \times n}$ if every square of $Q_{m \times n}$ is either in $D$ or adjacent to a square in $D$. The minimum size of a dominating set of $Q_{m \times n}$ is the domination number, denoted by $\gamma(Q_{m \times n})$. Values of $\gamma(Q_{m \times n}), \, 4 \leq m \leq n \leq 18,\,$ are given here, in each case with a file of minimum dominating sets (often all of them, up to symmetry) in an online appendix. In these ranges for $m$ and $n$, monotonicity fails once: $\gamma(Q_{8\times 11}) = 6 > 5 = \gamma(Q_{9 \times 11}) = \gamma(Q_{10 \times 11}) = \gamma(Q_{11 \times 11})$. Let $g(m)$ [respectively $g^{*}(m)$] be the largest integer such that $m$ queens suffice to dominate the $(m+1) \times g(m)$ board [respectively, to dominate the $(m+1) \times g^{*}(m)$ board with no two queens in a row]. Starting from the elementary bound $g(m) \leq 3m$, domination when the board is far from square is investigated. It is shown (Theorem 2) that $g(m) = 3m$ can only occur when $m \equiv 0, 1, 2, 3, \mbox{or } 4 \mbox{ (mod 9)}$, with an online appendix showing that this does occur for $m \leq 40, m \neq 3$. Also (Theorem 4), if $m \equiv 5, 6, \mbox{or } 7 \mbox{ (mod 9)}$ then $g^{*}(m) \leq 3m-2$, and if $m \equiv 8 \mbox{ (mod 9)}$ then $g^{*}(m) \leq 3m-4$. It is shown that equality holds in these bounds for $m \leq 40 $. Lower bounds on $\gamma(Q_{m \times n})$ are given. In particular, if $m \leq n$ then $\gamma(Q_{m \times n}) \geq \min \{ m,\lceil (m+n-2)/4 \rceil \}$. Two types of dominating sets (orthodox covers and centrally strong sets) are developed; each type is shown to give good upper bounds of $\gamma(Q_{m \times n})$ in several cases. Three questions are posed: whether monotonicity of $\gamma(Q_{m \times n})$ holds (other than from $(m, n) = (8, 11)$ to $(9, 11)$), whether $\gamma(Q_{m \times n}) = (m+n-2)/4$ occurs with $m \leq n < 3m+2$ (other than for $(m, n) = (3, 3)$ and $(11, 11)$), and whether the lower bound given above can be improved. A set of squares is independent if no two of its squares are adjacent. The minimum size of an independent dominating set of $Q_{m \times n}$ is the independent domination number, denoted by $i(Q_{m \times n})$. Values of $i(Q_{m \times n}), \, 4 \leq m \leq n \leq 18, \,$ are given here, in each case with some minimum dominating sets. In these ranges for $m$ and $n$, monotonicity fails twice: $i(Q_{8\times 11}) = 6 > 5 = i(Q_{9 \times 11}) = i(Q_{10 \times 11}) = i(Q_{11 \times 11})$, and $i(Q_{11 \times 18}) = 9 > 8 = i(Q_{12\times 18})$.

Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 194 ◽  
Author(s):  
Abel Cabrera-Martínez ◽  
Juan Carlos Hernández-Gómez ◽  
Ernesto Parra-Inza ◽  
José María Sigarreta Almira

A set of vertices of a graph G is a total dominating set if every vertex of G is adjacent to at least one vertex in such a set. We say that a total dominating set D is a total outer k-independent dominating set of G if the maximum degree of the subgraph induced by the vertices that are not in D is less or equal to k − 1 . The minimum cardinality among all total outer k-independent dominating sets is the total outer k-independent domination number of G. In this article, we introduce this parameter and begin with the study of its combinatorial and computational properties. For instance, we give several closed relationships between this novel parameter and other ones related to domination and independence in graphs. In addition, we give several Nordhaus–Gaddum type results. Finally, we prove that computing the total outer k-independent domination number of a graph G is an NP-hard problem.


2012 ◽  
Vol 45 (1) ◽  
Author(s):  
Marcin Krzywkowski

AbstractA vertex of a graph is said to dominate itself and all of its neighbors. A double outer-independent dominating set of a graph


10.37236/953 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Adriana Hansberg ◽  
Dirk Meierling ◽  
Lutz Volkmann

A set $D\subseteq V$ of vertices is said to be a (connected) distance $k$-dominating set of $G$ if the distance between each vertex $u\in V-D$ and $D$ is at most $k$ (and $D$ induces a connected graph in $G$). The minimum cardinality of a (connected) distance $k$-dominating set in $G$ is the (connected) distance $k$-domination number of $G$, denoted by $\gamma_k(G)$ ($\gamma_k^c(G)$, respectively). The set $D$ is defined to be a total $k$-dominating set of $G$ if every vertex in $V$ is within distance $k$ from some vertex of $D$ other than itself. The minimum cardinality among all total $k$-dominating sets of $G$ is called the total $k$-domination number of $G$ and is denoted by $\gamma_k^t(G)$. For $x\in X\subseteq V$, if $N^k[x]-N^k[X-x]\neq\emptyset$, the vertex $x$ is said to be $k$-irredundant in $X$. A set $X$ containing only $k$-irredundant vertices is called $k$-irredundant. The $k$-irredundance number of $G$, denoted by $ir_k(G)$, is the minimum cardinality taken over all maximal $k$-irredundant sets of vertices of $G$. In this paper we establish lower bounds for the distance $k$-irredundance number of graphs and trees. More precisely, we prove that ${5k+1\over 2}ir_k(G)\geq \gamma_k^c(G)+2k$ for each connected graph $G$ and $(2k+1)ir_k(T)\geq\gamma_k^c(T)+2k\geq |V|+2k-kn_1(T)$ for each tree $T=(V,E)$ with $n_1(T)$ leaves. A class of examples shows that the latter bound is sharp. The second inequality generalizes a result of Meierling and Volkmann and Cyman, Lemańska and Raczek regarding $\gamma_k$ and the first generalizes a result of Favaron and Kratsch regarding $ir_1$. Furthermore, we shall show that $\gamma_k^c(G)\leq{3k+1\over2}\gamma_k^t(G)-2k$ for each connected graph $G$, thereby generalizing a result of Favaron and Kratsch regarding $k=1$.


Mathematics ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 820
Author(s):  
Pu Wu ◽  
Huiqin Jiang ◽  
Sakineh Nazari-Moghaddam ◽  
Seyed Mahmoud Sheikholeslami ◽  
Zehui Shao ◽  
...  

A set S ⊆ V ( G ) in a graph G is a dominating set if every vertex of G is either in S or adjacent to a vertex of S . A dominating set S is independent if any pair of vertices in S is not adjacent. The minimum cardinality of an independent dominating set on a graph G is called the independent domination number i ( G ) . A graph G is independent domination stable if the independent domination number of G remains unchanged under the removal of any vertex. In this paper, we study the basic properties of independent domination stable graphs, and we characterize all independent domination stable trees and unicyclic graphs. In addition, we establish bounds on the order of independent domination stable trees.


2018 ◽  
Vol 10 (02) ◽  
pp. 1850024
Author(s):  
Nuttawoot Nupo ◽  
Sayan Panma

Let [Formula: see text] denote the Cayley digraph of the rectangular group [Formula: see text] with respect to the connection set [Formula: see text] in which the rectangular group [Formula: see text] is isomorphic to the direct product of a group, a left zero semigroup, and a right zero semigroup. An independent dominating set of [Formula: see text] is the independent set of elements in [Formula: see text] that can dominate the whole elements. In this paper, we investigate the independent domination number of [Formula: see text] and give more results on Cayley digraphs of left groups and right groups which are specific cases of rectangular groups. Moreover, some results of the path independent domination number of [Formula: see text] are also shown.


Author(s):  
P. Jeyalakshmi ◽  
K. Karuppasamy ◽  
S. Arockiaraj

Let [Formula: see text] be a signed graph. A dominating set [Formula: see text] is said to be an independent dominating set of [Formula: see text] if [Formula: see text] is a fully negative. In this paper, we initiate a study of this parameter. We also establish the bounds and characterization on the independent domination number of a signed graph.


2020 ◽  
Vol 12 (05) ◽  
pp. 2050062
Author(s):  
Murat Erşen Berberler ◽  
Onur Uğurlu ◽  
Zeynep Nihan Berberler

Let [Formula: see text] be a graph. A subset [Formula: see text] of vertices is a dominating set if every vertex in [Formula: see text] is adjacent to at least one vertex of [Formula: see text]. The domination number is the minimum cardinality of a dominating set. Let [Formula: see text]. Then, [Formula: see text] strongly dominates [Formula: see text] and [Formula: see text] weakly dominates [Formula: see text] if (i) [Formula: see text] and (ii) [Formula: see text]. A subset [Formula: see text] of [Formula: see text] is a strong (weak) dominating set of [Formula: see text] if every vertex in [Formula: see text] is strongly (weakly) dominated by at least one vertex in [Formula: see text]. The strong (weak) domination number of [Formula: see text] is the minimum cardinality of a strong (weak) dominating set. A set [Formula: see text] is an independent (or stable) set if no two vertices of [Formula: see text] are adjacent. The independent domination number of [Formula: see text] (independent strong domination number, independent weak domination number, respectively) is the minimum size of an independent dominating set (independent strong dominating set, independent weak dominating set, respectively) of [Formula: see text]. In this paper, mathematical models are developed for the problems of independent domination and independent strong (weak) domination of a graph. Then test problems are solved by the GAMS software, the optima and execution times are implemented. To the best of our knowledge, this is the first mathematical programming formulations for the problems, and computational results show that the proposed models are capable of finding optimal solutions within a reasonable amount of time.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1411
Author(s):  
Magda Dettlaff ◽  
Magdalena Lemańska ◽  
Jerzy Topp

The cardinality of a largest independent set of G, denoted by α(G), is called the independence number of G. The independent domination number i(G) of a graph G is the cardinality of a smallest independent dominating set of G. We introduce the concept of the common independence number of a graph G, denoted by αc(G), as the greatest integer r such that every vertex of G belongs to some independent subset X of VG with |X|≥r. The common independence number αc(G) of G is the limit of symmetry in G with respect to the fact that each vertex of G belongs to an independent set of cardinality αc(G) in G, and there are vertices in G that do not belong to any larger independent set in G. For any graph G, the relations between above parameters are given by the chain of inequalities i(G)≤αc(G)≤α(G). In this paper, we characterize the trees T for which i(T)=αc(T), and the block graphs G for which αc(G)=α(G).


2016 ◽  
Vol 10 (1) ◽  
pp. 65-72 ◽  
Author(s):  
Mustapha Chellali ◽  
Teresa Haynes ◽  
Stephen Hedetniemi

A Roman dominating function (RDF) on a graph G is a function f : V (G) ? {0,1,2} satisfying the condition that every vertex u with f(u) = 0 is adjacent to at least one vertex v of G for which f(v) = 2. The weight of a Roman dominating function is the sum f(V) = ?v?V f(v), and the minimum weight of a Roman dominating function f is the Roman domination number ?R(G). An RDF f is called an independent Roman dominating function (IRDF) if the set of vertices assigned positive values under f is independent. The independent Roman domination number iR(G) is the minimum weight of an IRDF on G. We show that for every nontrivial connected graph G with maximum degree ?, ?R(G)? ?+1/??(G) and iR(G) ? i(G) + ?(G)/?, where ?(G) and i(G) are, respectively, the domination and independent domination numbers of G. Moreover, we characterize the connected graphs attaining each lower bound. We give an additional lower bound for ?R(G) and compare our two new bounds on ?R(G) with some known lower bounds.


2021 ◽  
Vol 40 (3) ◽  
pp. 635-658
Author(s):  
J. John ◽  
V. Sujin Flower

Let G = (V, E) be a connected graph with at least three vertices. A set S ⊆ E(G) is called an edge-to-edge geodetic dominating set of G if S is both an edge-to-edge geodetic set of G and an edge dominating set of G. The edge-to-edge geodetic domination number γgee(G) of G is the minimum cardinality of its edge-to-edge geodetic dominating sets. Some general properties satisfied by this concept are studied. Connected graphs of size m with edge-to-edge geodetic domination number 2 or m or m − 1 are characterized. We proved that if G is a connected graph of size m ≥ 4 and Ḡ is also connected, then 4 ≤ γgee(G) + γgee(Ḡ) ≤ 2m − 2. Moreover we characterized graphs for which the lower and the upper bounds are sharp. It is shown that, for every pair of positive integers a, b with 2 ≤ a ≤ b, there exists a connected graph G with gee(G) = a and γgee(G) = b. Also it is shown that, for every pair of positive integers a and b with 2 < a ≤ b, there exists a connected graph G with γe(G) = a and γgee(G) = b, where γe(G) is the edge domination number of G and gee(G) is the edge-to-edge geodetic number of G.


Sign in / Sign up

Export Citation Format

Share Document