scholarly journals Long Path Lemma concerning Connectivity and Independence Number

10.37236/636 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Shinya Fujita ◽  
Alexander Halperin ◽  
Colton Magnant

We show that, in a $k$-connected graph $G$ of order $n$ with $\alpha(G) = \alpha$, between any pair of vertices, there exists a path $P$ joining them with $$|P| \geq \min \left\{ n, \frac{(k - 1)(n - k)}{\alpha} + k \right\}.$$ This implies that, for any edge $e \in E(G)$, there is a cycle containing $e$ of length at least $$\min \left\{ n, \frac{(k - 1)(n - k)}{\alpha} + k \right\}.$$ Moreover, we generalize our result as follows: for any choice $S$ of $s \leq k$ vertices in $G$, there exists a tree $T$ whose set of leaves is $S$ with $$|T| \geq \min \left\{ n, \frac{(k - s + 1)(n - k)}{\alpha} + k \right\}.$$

2018 ◽  
Vol 10 (05) ◽  
pp. 1850069
Author(s):  
Nader Jafari Rad ◽  
Elahe Sharifi

The independence number of a graph [Formula: see text], denoted by [Formula: see text], is the maximum cardinality of an independent set of vertices in [Formula: see text]. [Henning and Löwenstein An improved lower bound on the independence number of a graph, Discrete Applied Mathematics  179 (2014) 120–128.] proved that if a connected graph [Formula: see text] of order [Formula: see text] and size [Formula: see text] does not belong to a specific family of graphs, then [Formula: see text]. In this paper, we strengthen the above bound for connected graphs with maximum degree at least three that have a non-cut-vertex of maximum degree. We show that if a connected graph [Formula: see text] of order [Formula: see text] and size [Formula: see text] has a non-cut-vertex of maximum degree then [Formula: see text], where [Formula: see text] is the maximum degree of the vertices of [Formula: see text]. We also characterize all connected graphs [Formula: see text] of order [Formula: see text] and size [Formula: see text] that have a non-cut-vertex of maximum degree and [Formula: see text].


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Yujun Yang

The resistance distance between two vertices of a connected graphGis defined as the effective resistance between them in the corresponding electrical network constructed fromGby replacing each edge ofGwith a unit resistor. The Kirchhoff index ofGis the sum of resistance distances between all pairs of vertices. In this paper, general bounds for the Kirchhoff index are given via the independence number and the clique number, respectively. Moreover, lower and upper bounds for the Kirchhoff index of planar graphs and fullerene graphs are investigated.


10.37236/5480 ◽  
2019 ◽  
Vol 26 (4) ◽  
Author(s):  
Shuya Chiba ◽  
Michitaka Furuya ◽  
Kenta Ozeki ◽  
Masao Tsugaki ◽  
Tomoki Yamashita

In [Graphs Combin. 24 (2008) 469–483], the third author and the fifth author conjectured that if $G$ is a $k$-connected graph such that $\sigma_{k+1}(G) \ge |V(G)|+\kappa(G)+(k-2)(\alpha(G)-1)$, then $G$ contains a Hamilton cycle, where $\sigma_{k+1}(G)$, $\kappa(G)$ and $\alpha(G)$ are the minimum degree sum of $k+1$ independent vertices, the connectivity and the independence number of $G$, respectively. In this paper, we settle this conjecture. The degree sum condition is best possible.  


Author(s):  
Hilal A. Ganie ◽  
Abdollah Alhevaz ◽  
Maryam Baghipur

In this paper, we study the generalized distance matrix [Formula: see text] assigned to simple connected graph [Formula: see text], which is the convex combinations of Tr[Formula: see text] and [Formula: see text] and defined as [Formula: see text] where [Formula: see text] and Tr[Formula: see text] denote the distance matrix and diagonal matrix of the vertex transmissions of a simple connected graph [Formula: see text], respectively. Denote with [Formula: see text], the generalized distance eigenvalues of [Formula: see text]. For [Formula: see text], let [Formula: see text] and [Formula: see text] be, respectively, the sum of [Formula: see text]-largest generalized distance eigenvalues and the sum of [Formula: see text]-smallest generalized distance eigenvalues of [Formula: see text]. We obtain bounds for [Formula: see text] and [Formula: see text] in terms of the order [Formula: see text], the Wiener index [Formula: see text] and parameter [Formula: see text]. For a graph [Formula: see text] of diameter 2, we establish a relationship between the [Formula: see text] and the sum of [Formula: see text]-largest generalized adjacency eigenvalues of the complement [Formula: see text]. We characterize the connected bipartite graph and the connected graphs with given independence number that attains the minimum value for [Formula: see text]. We also obtain some bounds for the graph invariants [Formula: see text] and [Formula: see text].


Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 751
Author(s):  
Ludwin Basilio ◽  
Jair Simon ◽  
Jesús Leaños ◽  
Omar Cayetano

If G = ( V ( G ) , E ( G ) ) is a simple connected graph with the vertex set V ( G ) and the edge set E ( G ) , S is a subset of V ( G ) , and let B ( S ) be the set of neighbors of S in V ( G ) ∖ S . Then, the differential of S ∂ ( S ) is defined as | B ( S ) | − | S | . The differential of G, denoted by ∂ ( G ) , is the maximum value of ∂ ( S ) for all subsets S ⊆ V ( G ) . The graph operator Q ( G ) is defined as the graph that results by subdividing every edge of G once and joining pairs of these new vertices iff their corresponding edges are incident in G. In this paper, we study the relations between ∂ ( G ) and ∂ ( Q ( G ) ) . Besides, we exhibit some results relating the differential ∂ ( G ) and well-known graph invariants, such as the domination number, the independence number, and the vertex-cover number.


Author(s):  
G. Suresh Singh ◽  
P. K. Prasobha

Let $K$ be any finite field. For any prime $p$, the $p$-adic valuation map is given by $\psi_{p}:K/\{0\} \to \R^+\bigcup\{0\}$ is given by $\psi_{p}(r) = n$ where $r = p^n \frac{a}{b}$, where $p,a,b$ are relatively prime. The field $K$ together with a valuation is called valued field. Also, any field $K$ has the trivial valuation determined by $\psi{(K)} = \{0,1\}$. Through out the paper K represents $\Z_q$. In this paper, we construct the graph corresponding to the valuation map called the valued field graph, denoted by $VFG_{p}(\Z_{q})$ whose vertex set is $\{v_0,v_1,v_2,\ldots, v_{q-1}\}$ where two vertices $v_i$ and $v_j$ are adjacent if $\psi_{p}(i) = j$ or $\psi_{p}(j) = i$. Here, we tried to characterize the valued field graph in $\Z_q$. Also we analyse various graph theoretical parameters such as diameter, independence number etc.


Mathematics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 17 ◽  
Author(s):  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Hilal A. Ganie ◽  
Yilun Shang

The generalized distance matrix D α ( G ) of a connected graph G is defined as D α ( G ) = α T r ( G ) + ( 1 − α ) D ( G ) , where 0 ≤ α ≤ 1 , D ( G ) is the distance matrix and T r ( G ) is the diagonal matrix of the node transmissions. In this paper, we extend the concept of energy to the generalized distance matrix and define the generalized distance energy E D α ( G ) . Some new upper and lower bounds for the generalized distance energy E D α ( G ) of G are established based on parameters including the Wiener index W ( G ) and the transmission degrees. Extremal graphs attaining these bounds are identified. It is found that the complete graph has the minimum generalized distance energy among all connected graphs, while the minimum is attained by the star graph among trees of order n.


2020 ◽  
Vol 70 (2) ◽  
pp. 497-503
Author(s):  
Dipendu Maity ◽  
Ashish Kumar Upadhyay

Abstract If the face-cycles at all the vertices in a map are of same type then the map is said to be a semi-equivelar map. There are eleven types of semi-equivelar maps on the torus. In 1972 Altshuler has presented a study of Hamiltonian cycles in semi-equivelar maps of three types {36}, {44} and {63} on the torus. In this article we study Hamiltonicity of semi-equivelar maps of the other eight types {33, 42}, {32, 41, 31, 41}, {31, 61, 31, 61}, {34, 61}, {41, 82}, {31, 122}, {41, 61, 121} and {31, 41, 61, 41} on the torus. This gives a partial solution to the well known Conjecture that every 4-connected graph on the torus has a Hamiltonian cycle.


2020 ◽  
Vol 53 (2) ◽  
pp. 3445-3450
Author(s):  
Katrine Tjell ◽  
Rafael Wisniewski

2021 ◽  
Vol 9 (1) ◽  
pp. 1-18
Author(s):  
Carolyn Reinhart

Abstract The distance matrix 𝒟(G) of a connected graph G is the matrix containing the pairwise distances between vertices. The transmission of a vertex vi in G is the sum of the distances from vi to all other vertices and T(G) is the diagonal matrix of transmissions of the vertices of the graph. The normalized distance Laplacian, 𝒟𝒧(G) = I−T(G)−1/2 𝒟(G)T(G)−1/2, is introduced. This is analogous to the normalized Laplacian matrix, 𝒧(G) = I − D(G)−1/2 A(G)D(G)−1/2, where D(G) is the diagonal matrix of degrees of the vertices of the graph and A(G) is the adjacency matrix. Bounds on the spectral radius of 𝒟 𝒧 and connections with the normalized Laplacian matrix are presented. Twin vertices are used to determine eigenvalues of the normalized distance Laplacian. The distance generalized characteristic polynomial is defined and its properties established. Finally, 𝒟𝒧-cospectrality and lack thereof are determined for all graphs on 10 and fewer vertices, providing evidence that the normalized distance Laplacian has fewer cospectral pairs than other matrices.


Sign in / Sign up

Export Citation Format

Share Document