Two-dimensional Model Predictive Iterative Learning Control Scheme Based on a Two-dimensional Performance Model

2014 ◽  
Vol 39 (5) ◽  
pp. 565-573 ◽  
Author(s):  
Jia SHI ◽  
Qing-Yin JIANG ◽  
Zhi-Kai CAO ◽  
Hua ZHOU ◽  
Fu-Rong GAO
2019 ◽  
Vol 292 ◽  
pp. 01010
Author(s):  
Mihailo Lazarević ◽  
Nikola Živković ◽  
Darko Radojević

The paper designs an appropriate iterative learning control (ILC) algorithm based on the trajectory characteristics of upper exosk el eton robotic system. The procedure of mathematical modelling of an exoskeleton system for rehabilitation is given and synthesis of a control law with two loops. First (inner) loop represents exact linearization of a given system, and the second (outer) loop is synthesis of a iterative learning control law which consists of two loops, open and closed loop. In open loop ILC sgnPDD2 is applied, while in feedback classical PD control law is used. Finally, a simulation example is presented to illustrate the feasibility and effectiveness of the proposed advanced open-closed iterative learning control scheme.


Author(s):  
J. H. Wu ◽  
H Ding

This paper studies the repetitive motion control of a high-acceleration and high-precision platform driven by linear motors. The control scheme comprises an anticipatory iterative learning control (A-ILC) component and a cascaded control structure including an inner-loop velocity PI controller and an outer-loop position P controller. During the motion process, the cascaded controller remains invariant while the A-ILC adjusts the reference command cycle by cycle to achieve better performance. Experiments are carried out to validate the proposed control structure. The results confirm that the proposed control scheme can improve the system performance significantly in both low-speed trajectory tracking motions and fast point-to-point motion. In the experiments, P-type and D-type ILCs are also utilized to adjust the reference command. Compared with the A type, P-type ILC leads to larger tracking error bounds and D-type ILC lacks a fast convergence rate for low-speed motions, while for fast point-to-point motion these two types of ILC are unable to work well.


Author(s):  
Chems Eddine Boudjedir ◽  
Djamel Boukhetala

In this article, an adaptive robust iterative learning control is developed to solve the trajectory tracking problem of a parallel Delta robot performing repetitive tasks and subjected to external disturbances. The proposed control scheme is composed of an adaptive proportional–derivative controller to increase the convergence rate, a proportional–derivative-type iterative learning control to enhance the tracking performances through the repetitive trajectory as well as a robust term to compensate the repetitive and nonrepetitive disturbances. The practical assumption of alignment condition is introduced instead of the classical assumption of resetting conditions. The asymptotic convergence is proved using Lyaponuv analysis, and it is shown that the tracking error decreases through the iterations. Simulation and experiments are performed on a Delta robot to demonstrate the effectiveness and the superiority of the proposed controller over the traditional iterative learning control.


Sign in / Sign up

Export Citation Format

Share Document