scholarly journals Physical and Mechanical Properties of Engineered Coconut Trunk Veneer (ECTV) for Interior Products

CORD ◽  
2013 ◽  
Vol 29 (1) ◽  
pp. 4
Author(s):  
Izran K.

A study was undertaken to investigate the physical and mechanical properties of engineered coconut (Cocos nucifera) veneer (ECTV). The coconut trunks (40 – 50 years old) were obtained from Hutan Melintang, Perak and were peeled into veneers at Bestgrade Sdn. Bhd. The veneers were obtained from two different parts of coconut trunks viz inner and outer which were used to fabricate 5-ply engineered coconut veneers. The ECTVs were fabricated at FRIM’s Bio-Composite Laboratory. They were manufactured with urea formaldehyde (UF) resin and with three combinations namely 100% inner, 100% outer and alternate outer & inner veneers (mix). The densities for the engineered veneers made of 100% outer, 100% inner, and mixed layers were 944.1 kg/m3, 858.15 kg/m3 and 891.11 kg/m3, respectively. Results showed that the Modulus of Rupture (MOR) of the ECTV made from 100% outer veneers had the highest mean MOR value (88.69 MPa), followed by those made from the mixed veneers (74.35 MPa) and 100% inner (58.44 MPa), respectively.  On the other hand, the Modulus Of Elasticity (MOE) values were 10.12 Mpa for outer, 8,210 Mpa for inner and 10,075 Mpa for mixed. Overall, the testing results showed that the ECTV met the standard requirements.

2015 ◽  
Vol 50 (3) ◽  
pp. 189-192 ◽  
Author(s):  
SA Shanu ◽  
AK Das ◽  
MM Rahman ◽  
M Ashaduzzaman

This experiment was carried out to analyze the effects of CCB (chromate-copper-boron) preservative treatment on physical and mechanical properties of Albizia richardiana wood using dipping method. Retention of preservative was maximum at 8% concentration of the preservatives. Based on the retention at this concentration, the physical and mechanical properties of the treated wood were examined. The density of untreated A. richardiana wood was 521 kg/m3. It changed to 542 kg/m3 on treatment. This increase in density by 2.30% for treated wood was significant. On the other hand, modulus of rupture (MOR) increased significantly from 93 to 107 N/mm2 on treatment of the wood. The modulus of elasticity (MOE) increased from 3205 to 4861 N/mm2. Physical and mechanical properties of the wood improved by treating with CCB preservative.Bangladesh J. Sci. Ind. Res. 50(3), 189-192, 2015


1970 ◽  
Vol 46 (4) ◽  
pp. 543-548 ◽  
Author(s):  
M Ashaduzzaman ◽  
R Rana ◽  
MNH Khan ◽  
MI Shams

This paper investigated the potentiality of muli (Melocanna baccifera) for making bamboo mat plywood. Bamboo mat plywood with the length, width and thickness of 2.4 m × 1.2 m × 7 mm was made using liquid urea formaldehyde resin. The physical and mechanical properties of such plywood were compared with the existing market plywood. The average density of bamboo mat plywood was much higher compared to the existing market plywood. The modulus of rupture (MOR) of bamboo mat plywood was 3 times and the modulus of elasticity (MOE) was 6 times higher compared to commercial (Bombax ceiba) plywood. Interestingly, the specific MOR and MOE were significantly higher than those of market plywood. The high strength values might be due to the long fiber length of the bamboo. Furthermore, the lamination of decorative thin garjan (Dipterocarpus turbinatus) veneer did not significantly reduce mechanical properties of the products. Bamboo plywood mat as well as garjan laminated bamboo mat plywood showed better performance in respect to thickness swelling, linear expansion and water absorption. Hence, muli bamboo can be a potential alternative source of raw material for the manufacture of plywood materials. Key words: Bamboo mat plywood; Density; Dimensional stability; Modulus of elasticity; Modulus of rupture DOI: http://dx.doi.org/10.3329/bjsir.v46i4.9605 BJSIR 2011; 46(4): 543-548


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 220
Author(s):  
Petar Antov ◽  
Viktor Savov ◽  
Ľuboš Krišťák ◽  
Roman Réh ◽  
George I. Mantanis

The potential of producing eco-friendly, formaldehyde-free, high-density fiberboard (HDF) panels from hardwood fibers bonded with urea-formaldehyde (UF) resin and a novel ammonium lignosulfonate (ALS) is investigated in this paper. HDF panels were fabricated in the laboratory by applying a very low UF gluing factor (3%) and ALS content varying from 6% to 10% (based on the dry fibers). The physical and mechanical properties of the fiberboards, such as water absorption (WA), thickness swelling (TS), modulus of elasticity (MOE), bending strength (MOR), internal bond strength (IB), as well as formaldehyde content, were determined in accordance with the corresponding European standards. Overall, the HDF panels exhibited very satisfactory physical and mechanical properties, fully complying with the standard requirements of HDF for use in load-bearing applications in humid conditions. Markedly, the formaldehyde content of the laboratory fabricated panels was extremely low, ranging between 0.7–1.0 mg/100 g, which is, in fact, equivalent to the formaldehyde release of natural wood.


BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 6795-6810
Author(s):  
Nurul Fatiha Osman ◽  
Paimon Bawon ◽  
Seng Hua Lee ◽  
Pakhriazad Hassan Zaki ◽  
Syeed SaifulAzry Osman Al-Eldrus ◽  
...  

Particleboard was produced by mixing oil heat-treated rubberwood particles at different ratios, with the goal of achieving high dimensional stability. Rubberwood particles were soaked in palm oil for 2 h and heat treated at 200 °C for 2 h. The treated particles were soaked in boiling water for 30 min to remove oil and were tested for chemical alteration and thermal characterization via Fourier-transform infrared spectroscopy and thermogravimetric analysis. Particleboard was fabricated by mixing treated rubberwood particles (30%, 50%, and 70%) with untreated particles (70%, 50%, and 30%, respective to previous percentages) and bonded with urea-formaldehyde (UF) resin. The results revealed that oil-heat treated particles had greater thermal stability than the untreated particles. The addition of oil heat treated particles improved the physical properties of the particleboard with no significant reduction in mechanical strength. However, this was only valid for ratios of 70% untreated to 30% treated and 50% untreated to 50% treated. When a ratio of 70% oil heat treated particles was used, both the physical and mechanical properties were reduced drastically, due to bonding interference caused by excessive oil content. Particleboard made with a ratio of 5:5 (treated to untreated) exhibited the best physical and mechanical properties.


2017 ◽  
Vol 41 (1) ◽  
Author(s):  
Mírian de Almeida Costa ◽  
Cláudio Henrique Soares Del Menezzi

ABSTRACT Thermo-mechanical treatment is a technique for wood modification in which samples are densified by means of heat and mechanical compression, applied perpendicularly to fibers, which under different combinations of time, temperature, and pressure increases wood density and thus improve some of its properties. This study aimed to treat thermo-mechanically parica plywood and observe the effects on its physical and mechanical properties. Specimens were submitted to two treatments, 120 and 150 ºC, remaining under pressure for seven minutes and, subsequently, under zero pressure for 15 minutes. Results showed a significant increase in specific mass from 0.48 g cm-3 to an average of 0.56 g cm-3, and a compression ratio of about 31.7% on average. Physical properties also varied significantly and results showed that treated samples swelled and absorbed more water than those untreated, leading to a greater thickness non-return rate. This indicates the proposed thermal treatments did not release the internal compressive stress generated during panel pressing, not improving its dimensional stability as a result. On the other hand, mechanical properties were positively affected, leading to an increase of 27.5% and 51.8% in modulus of rupture after treatments at 120 and 150 ºC, respectively. Modulus of elasticity and glue-line shear strength did not vary statistically and Janka hardness was 29.7% higher after treatment at 150 ºC.


2021 ◽  
Vol 3 (1) ◽  
pp. 41-44
Author(s):  
Nur Wafa Amalina Amali ◽  
Nor Yuziah Mohd Yunus ◽  
Wan Mohd Nazri Wan Abdul Rahman

In this study, mechanical properties of commercially manufactured hybrid particleboard from mix-tropical wood and rubberwood with four different densities at 25mm thickness have been investigated. The particleboard sample cutting and testing was in accordance to EN312:2013. The density of particleboard is identified with interval of 10kg/m3 for different densities which include 660kg/m3, 670kg/m3, 680kg/m3 and 690kg/m3. Particleboards were made with the ratio of 40:60 for mix-tropical wood particle and rubberwood particle respectively. The particleboards were prepared with urea formaldehyde (UF) with E1 formulation with addition of wax and hardener.  Increment of 10kg/m3 density for each particleboard led to increase in internal bonding (IB), bending testing include modulus of rupture (MOR) and modulus of elasticity (MOE), surface soundness (SS) and screw edge (SE) withdrawal. It was found that with board increment of 10kg/m3, the improvement was not statically significant except that for MOR. All panels met the minimum requirements of standard.


2021 ◽  
Vol 891 (1) ◽  
pp. 012007
Author(s):  
Y S Hadi ◽  
E N Herliyana ◽  
I M Sulastiningsih ◽  
E Basri ◽  
R Pari ◽  
...  

Abstract Jabon (Anthocephalus cadamba) laminas were impregnated with polystyrene and reached 21.2% polymer loading. The laminas were manufactured for three-layer glued laminated timber (glulam) using isocyanate glue with glue spread 280 g/m2 and cold-press process. For comparison purposes, untreated glulam as control and also solid wood were prepared. The physical-mechanical properties were evaluated according to the Japanese Agricultural Standard (JAS) 234-2003. The results showed that the color of glulam was not different from polystyrene glulam. The density of polystyrene glulam was higher than untreated glulam and solid wood, but the moisture content was lower than the other. The product kinds of solid wood, untreated glulam, and polystyrene glulam did not affect shear strength and modulus of rupture (MOR), while the modulus of elasticity (MOE) of untreated glulam and hardness of polystyrene glulam were the highest values and the other products were not different one each other. Both kinds of glulam fulfilled the Japanese standard in terms of moisture content, MOR, and delamination in hot water, but MOE and shear strength did not. Regarding its advantages, polystyrene glulam could be further developed using a higher wood density.


BioResources ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. 9596-9610
Author(s):  
Yali Shao ◽  
Lili Li ◽  
Zhangjing Chen ◽  
Sunguo Wang ◽  
Ximing Wang

Poplar (Populus) wood was subjected in this work to thermo-hydro-mechanical treatment. The influence of the treatment parameters on the physical and mechanical properties were investigated. The wood samples were densified under three compression ratios (0%, 30%, and 50%), and thermally treated at three temperatures (180 °C, 200 °C, and 220 °C), at three thermal treatment durations (3 h, 4 h, and 5 h). The density, modulus of elasticity, modulus of rupture, radial hardness, and thickness swelling were measured. The results showed that the densities of the samples increased by 36.6% to 49.7%. As the compression rate increased, the temperature, duration, modulus of elasticity, modulus of rupture, and hardness increased. However, the dimensions of the densified samples were less stable. Compared to the densified samples, the maximum thickness swelling could be reduced by 74% (from 29.7% to 7.8%) when subjected to a thermal treatment at 220 °C for 3 h.


2019 ◽  
Vol 8 (4) ◽  
pp. 6808-6812

This study investigate the effect of the board thickness and resin content on the properties of particleboard. Single-layered sawmill wastes and rubberwood particleboards bonded with urea formaldehyde (UF) resins were manufactured. The boards were fabricated with three different board thicknesses (15, 18 and 25mm) at three different resin contents (7, 8 and 9%). The boards produced were evaluated for their modulus of elasticity (MOE), modulus of rupture (MOR), internal bonding (IB) and thickness swelling (TS) in accordance with the European Standards. Board thickness does affect the mechanical properties of particleboard. The study revealed that thinner boards gave higher MOE, MOR, IB and TS. No significant effects were found among three resin contents for MOE, MOR, IB and TS. It can be concluded that the particleboard made from mix tropical wood from sawmill waste and with rubberwood were suitable for particleboard manufacturing.


Author(s):  
Atoyebi Olumoyewa Dotun ◽  
Odeyemi Samson Olalekan ◽  
Azeez Lateef Olugbenga ◽  
Modupe Abayomi Emmanuel

This study considered the production of composite ceiling boards from both agricultural and industrial wastes. Boards with different blending proportions by weight of cement, corncob and sawdust (Cem:Ccb:Swd) were produced and tested. Physical and mechanical tests such as Water Absorption (WA), Thickness Swelling (TS), Modulus of Elasticity (MOE) and Modulus of Rupture (MOR) were carried out on the products. The findings revealed that the board with Cem:Ccb:Swd blending proportion 50:10:40 gave the highest values of MOE and MOR and also had the lowest values of WA and TS. The MOE and MOR values of 3.432 are both higher than the minimum values of 550 N/mm2 and 3 N/mm2 specified for MOE and MOR respectively by the American National Standard Institute, for general-use particle boards. The cement content is inversely proportional to the physical properties and directly proportional to the mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document