scholarly journals Global sensitivity analysis of failure probability caused by fatigue crack propagation

Author(s):  
Zdeněk Kala

The probability of failure of a load bearing steel member is investigated using a new type of global sensitivity analysis subordinated to contrasts. The main objective of the probability-oriented sensitivity analysis is structural reliability. The structural reliability methodology uses random variables as inputs. The subject of interest is the identification of those random variables that are most important when the limit state of a steel bridge member is reached. The limit state is defined by the occurrence of brittle fracture, which results from stress changes caused by multiple repeated loads. The propagation of a single-edge crack from initial to critical size is analysed using linear fracture mechanics. The failure probability and sensitivity indices are calculated using sampling-based methods. The sensitivity indices are estimated using double-nested-loop simulation of the Latin Hypercube Sampling method. New findings indicate that interaction effects among input variables strongly influence the probability of failure especially at the beginning of the operating period.

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Lei Cheng ◽  
Zhenzhou Lu ◽  
Luyi Li

An extending Borgonovo’s global sensitivity analysis is proposed to measure the influence of fuzzy distribution parameters on fuzzy failure probability by averaging the shift between the membership functions (MFs) of unconditional and conditional failure probability. The presented global sensitivity indices can reasonably reflect the influence of fuzzy-valued distribution parameters on the character of the failure probability, whereas solving the MFs of unconditional and conditional failure probability is time-consuming due to the involved multiple-loop sampling and optimization operators. To overcome the large computational cost, a single-loop simulation (SLS) is introduced to estimate the global sensitivity indices. By establishing a sampling probability density, only a set of samples of input variables are essential to evaluate the MFs of unconditional and conditional failure probability in the presented SLS method. Significance of the global sensitivity indices can be verified and demonstrated through several numerical and engineering examples.


2019 ◽  
Vol 65 ◽  
pp. 266-293 ◽  
Author(s):  
Nazih Benoumechiara ◽  
Kevin Elie-Dit-Cosaque

In global sensitivity analysis, the well-known Sobol’ sensitivity indices aim to quantify how the variance in the output of a mathematical model can be apportioned to the different variances of its input random variables. These indices are based on the functional variance decomposition and their interpretation becomes difficult in the presence of statistical dependence between the inputs. However, as there are dependencies in many application studies, this drawback enhances the development of interpretable sensitivity indices. Recently, the Shapley values that were developed in the field of cooperative games theory have been connected to global sensitivity analysis and present good properties in the presence of dependencies. Nevertheless, the available estimation methods do not always provide confidence intervals and require a large number of model evaluations. In this paper, a bootstrap resampling is implemented in existing algorithms to assess confidence intervals. We also propose to consider a metamodel in substitution of a costly numerical model. The estimation error from the Monte-Carlo sampling is combined with the metamodel error in order to have confidence intervals on the Shapley effects. Furthermore, we compare the Shapley effects with existing extensions of the Sobol’ indices in different examples of dependent random variables.


2020 ◽  
Vol 14 ◽  

This article presents a stochastic computational model for the analysis of the reliability of a drawn steel bar. The whole distribution of the limit state function is studied using global sensitivity analysis based on Cramér-von Mises distance. The algorithm for estimating the sensitivity indices is based on one loop of the Latin Hypercube Sampling method in combination with numerical integration. The algorithm is effective due to the approximation of resistance using a threeparameter lognormal distribution. Goodness-of-fit tests and other comparative studies demonstrate the significant accuracy and suitability of the three-parameter lognormal distribution, which provides better results and faster response than sampling-based methods. Global sensitivity analysis is evaluated for two load cases with proven dominant effect of the long-term variation load action, which is introduced using Gumbel probability density function. The Cramér-von Mises indices are discussed in the context of other types of probability-oriented sensitivity indices whose performance has been studied earlier.


2020 ◽  
Vol 12 (11) ◽  
pp. 4788 ◽  
Author(s):  
Zdeněk Kala

Although more and more reliability-oriented sensitivity analysis (ROSA) techniques are now available, review and comparison articles of ROSA are absent. In civil engineering, many of the latest indices have never been used to analyse structural reliability for very small failure probability. This article aims to analyse and compare different sensitivity analysis (SA) techniques and discusses their strengths and weaknesses. For this purpose, eight selected sensitivity indices are first described and then applied in two different test cases. Four ROSA type indices are directly oriented on the failure probability or reliability index beta, and four other indices (of a different type) are oriented on the output of the limit state function. The case study and results correspond to cases under common engineering assumptions, where only two independent input variables with Gaussian distribution of the load action and the resistance are applied in the ultimate limit state. The last section of the article is dedicated to the analysis of the different results. Large differences between first-order sensitivity indices and very strong interaction effects obtained from ROSA are observed for very low values of failure probability. The obtained numerical results show that ROSA methods lack a common platform that clearly interprets the relationship of indices to their information value. This paper can help orientate in the selection of which sensitivity measure to use.


2021 ◽  
Vol 7 ◽  
Author(s):  
Nikolaos Tsokanas ◽  
Xujia Zhu ◽  
Giuseppe Abbiati ◽  
Stefano Marelli ◽  
Bruno Sudret ◽  
...  

Hybrid simulation is an experimental method used to investigate the dynamic response of a reference prototype structure by decomposing it to physically-tested and numerically-simulated substructures. The latter substructures interact with each other in a real-time feedback loop and their coupling forms the hybrid model. In this study, we extend our previous work on metamodel-based sensitivity analysis of deterministic hybrid models to the practically more relevant case of stochastic hybrid models. The aim is to cover a more realistic situation where the physical substructure response is not deterministic, as nominally identical specimens are, in practice, never actually identical. A generalized lambda surrogate model recently developed by some of the authors is proposed to surrogate the hybrid model response, and Sobol’ sensitivity indices are computed for substructure quantity of interest response quantiles. Normally, several repetitions of every single sample of the inputs parameters would be required to replicate the response of a stochastic hybrid model. In this regard, a great advantage of the proposed framework is that the generalized lambda surrogate model does not require repeated evaluations of the same sample. The effectiveness of the proposed hybrid simulation global sensitivity analysis framework is demonstrated using an experiment.


2021 ◽  
Author(s):  
Giuseppe Abbiati ◽  
Stefano Marelli ◽  
Nikolaos Tsokanas ◽  
Bruno Sudret ◽  
Bozidar Stojadinovic

Hybrid Simulation is a dynamic response simulation paradigm that merges physical experiments and computational models into a hybrid model. In earthquake engineering, it is used to investigate the response of structures to earthquake excitation. In the context of response to extreme loads, the structure, its boundary conditions, damping, and the ground motion excitation itself are all subjected to large parameter variability. However, in current seismic response testing practice, Hybrid Simulation campaigns rely on a few prototype structures with fixed parameters subjected to one or two ground motions of different intensity. While this approach effectively reveals structural weaknesses, it does not reveal the sensitivity of structure's response. This thus far missing information could support the planning of further experiments as well as drive modeling choices in subsequent analysis and evaluation phases of the structural design process.This paper describes a Global Sensitivity Analysis framework for Hybrid Simulation. This framework, based on Sobol' sensitivity indices, is used to quantify the sensitivity of the response of a structure tested using the Hybrid Simulation approach due to the variability of the prototype structure and the excitation parameters. Polynomial Chaos Expansion is used to surrogate the hybrid model response. Thereafter, Sobol' sensitivity indices are obtained as a by-product of polynomial coefficients, entailing a reduced number of Hybrid Simulations compared to a crude Monte Carlo approach. An experimental verification example highlights the excellent performance of Polynomial Chaos Expansion surrogates in terms of stable estimates of Sobol' sensitivity indices in the presence of noise caused by random experimental errors.


2021 ◽  
Author(s):  
Sabine M. Spiessl ◽  
Dirk-A. Becker ◽  
Sergei Kucherenko

<p>Due to their highly nonlinear, non-monotonic or even discontinuous behavior, sensitivity analysis of final repository models can be a demanding task. Most of the output of repository models is typically distributed over several orders of magnitude and highly skewed. Many values of a probabilistic investigation are very low or even zero. Although this is desirable in view of repository safety it can distort the evidence of sensitivity analysis. For the safety assessment of the system, the highest values of outputs are mainly essential and if those are only a few, their dependence on specific parameters may appear insignificant. By applying a transformation, different model output values are differently weighed, according to their magnitude, in sensitivity analysis. Probabilistic methods of higher-order sensitivity analysis, applied on appropriately transformed model output values, provide a possibility for more robust identification of relevant parameters and their interactions. This type of sensitivity analysis is typically done by decomposing the total unconditional variance of the model output into partial variances corresponding to different terms in the ANOVA decomposition. From this, sensitivity indices of increasing order can be computed. The key indices used most often are the first-order index (SI1) and the total-order index (SIT). SI1 refers to the individual impact of one parameter on the model and SIT represents the total effect of one parameter on the output in interactions with all other parameters. The second-order sensitivity indices (SI2) describe the interactions between two model parameters.</p><p>In this work global sensitivity analysis has been performed with three different kinds of output transformations (log, shifted and Box-Cox transformation) and two metamodeling approaches, namely the Random-Sampling High Dimensional Model Representation (RS-HDMR) [1] and the Bayesian Sparse PCE (BSPCE) [2] approaches. Both approaches are implemented in the SobolGSA software [3, 4] which was used in this work. We analyzed the time-dependent output with two approaches for sensitivity analysis, i.e., the pointwise and generalized approaches. With the pointwise approach, the output at each time step is analyzed independently. The generalized approach considers averaged output contributions at all previous time steps in the analysis of the current step. Obtained results indicate that robustness can be improved by using appropriate transformations and choice of coefficients for the transformation and the metamodel.</p><p>[1] M. Zuniga, S. Kucherenko, N. Shah (2013). Metamodelling with independent and dependent inputs. Computer Physics Communications, 184 (6): 1570-1580.</p><p>[2] Q. Shao, A. Younes, M. Fahs, T.A. Mara (2017). Bayesian sparse polynomial chaos expansion for global sensitivity analysis. Computer Methods in Applied Mechanics and Engineering, 318: 474-496.</p><p>[3] S. M. Spiessl, S. Kucherenko, D.-A. Becker, O. Zaccheus (2018). Higher-order sensitivity analysis of a final repository model with discontinuous behaviour. Reliability Engineering and System Safety, doi: https://doi.org/10.1016/j.ress.2018.12.004.</p><p>[4] SobolGSA software (2021). User manual https://www.imperial.ac.uk/process-systems-engineering/research/free-software/sobolgsa-software/.</p>


2020 ◽  
Author(s):  
Monica Riva ◽  
Aronne Dell'Oca ◽  
Alberto Guadagnini

<p>Modern models of environmental and industrial systems have reached a relatively high level of complexity. The latter aspect could hamper an unambiguous understanding of the functioning of a model, i.e., how it drives relationships and dependencies among inputs and outputs of interest. Sensitivity Analysis tools can be employed to examine this issue.</p><p>Global sensitivity analysis (GSA) approaches rest on the evaluation of sensitivity across the entire support within which system model parameters are supposed to vary. In this broad context, it is important to note that the definition of a sensitivity metric must be linked to the nature of the question(s) the GSA is meant to address. These include, for example: (i) which are the most important model parameters with respect to given model output(s)?; (ii) could we set some parameter(s) (thus assisting model calibration) at prescribed value(s) without significantly affecting model results?; (iii) at which space/time locations can one expect the highest sensitivity of model output(s) to model parameters and/or knowledge of which parameter(s) could be most beneficial for model calibration?</p><p>The variance-based Sobol’ Indices (e.g., Sobol, 2001) represent one of the most widespread GSA metrics, quantifying the average reduction in the variance of a model output stemming from knowledge of the input. Amongst other techniques, Dell’Oca et al. [2017] proposed a moment-based GSA approach which enables one to quantify the influence of uncertain model parameters on the (statistical) moments of a target model output.</p><p>Here, we embed in these sensitivity indices the effect of uncertainties both in the system model conceptualization and in the ensuing model(s) parameters. The study is grounded on the observation that physical processes and natural systems within which they take place are complex, rendering target state variables amenable to multiple interpretations and mathematical descriptions. As such, predictions and uncertainty analyses based on a single model formulation can result in statistical bias and possible misrepresentation of the total uncertainty, thus justifying the assessment of multiple model system conceptualizations. We then introduce copula-based sensitivity metrics which allow characterizing the global (with respect to the input) value of the sensitivity and the degree of variability (across the whole range of the input values) of the sensitivity for each value that the prescribed model output can possibly undertake, as driven by a governing model. In this sense, such an approach to sensitivity is global with respect to model input(s) and local with respect to model output, thus enabling one to discriminate the relevance of an input across the entire range of values of the modeling goal of interest. The methodology is demonstrated in the context of flow and reactive transport scenarios.</p><p> </p><p><strong>References</strong></p><p>Sobol, I. M., 2001. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Sim., 55, 271-280.</p><p>Dell’Oca, A., Riva, M., Guadagnini, A., 2017. Moment-based metrics for global sensitivity analysis of hydrological systems. Hydr. Earth Syst. Sci., 21, 6219-6234.</p>


2021 ◽  
Author(s):  
Emilie Rouzies ◽  
Claire Lauvernet ◽  
Bruno Sudret ◽  
Arthur Vidard

Abstract. Pesticide transfers in agricultural catchments are responsible for diffuse but major risks to water quality. Spatialized pesticide transfer models are useful tools to assess the impact of the structure of the landscape on water quality. Before considering using these tools in operational contexts, quantifying their uncertainties is a preliminary necessary step. In this study, we explored how global sensitivity analysis can be applied to the recent PESHMELBA pesticide transfer model to quantify uncertainties on transfer simulations. We set up a virtual catchment based on a real one and we compared different approaches for sensitivity analysis that could handle the specificities of the model: high number of input parameters, limited size of sample due to computational cost and spatialized output. We compared Sobol' indices obtained from Polynomial Chaos Expansion, HSIC dependence measures and feature importance measures obtained from Random Forest surrogate model. Results showed the consistency of the different methods and they highlighted the relevance of Sobol' indices to capture interactions between parameters. Sensitivity indices were first computed for each landscape element (site sensitivity indices). Second, we proposed to aggregate them at the hillslope and the catchment scale in order to get a summary of the model sensitivity and a valuable insight into the model hydrodynamical behaviour. The methodology proposed in this paper may be extended to other modular and distributed hydrological models as there has been a growing interest in these methods in recent years.


2019 ◽  
Vol 11 (3) ◽  
pp. 168781401983835
Author(s):  
Yuzhen Zhao ◽  
Yongshou Liu ◽  
Qing Guo ◽  
Tao Han ◽  
Baohui Li

The resonance failure of straight–curved combination pipes conveying fluid which are widely used in engineering is becoming a serious issue. But there are only few studies available on the resonance failure of combination pipes. The resonance failure probability and global sensitivity analysis of straight–curved combination pipes conveying fluid are studied by the active learning Kriging method proposed in this article. Based on the Euler–Bernoulli beam theory, the dynamic stiffness matrices of straight and curved pipes are derived in the local coordinate system, respectively. Then the dynamic stiffness matrix and characteristic equation of a straight–curved combination pipe conveying fluid are assembled under a global coordinate system. The natural frequency is calculated based on the characteristic equation. A resonance failure performance function is established based on the resonance failure mechanism and relative criterions. The active learning Kriging model based on expected risk function is introduced for calculating the resonance failure probability and moment-independent global sensitivity analysis index. The importance rankings of input variables are obtained with different velocities. According to the results, it is shown that the method proposed in this article provides a lot of guidance for resonance reliability analysis and anti-resonance design in combination pipes conveying fluid.


Sign in / Sign up

Export Citation Format

Share Document