Frontiers in Built Environment
Latest Publications


TOTAL DOCUMENTS

766
(FIVE YEARS 549)

H-INDEX

15
(FIVE YEARS 7)

Published By Frontiers Media Sa

2297-3362

2022 ◽  
Vol 7 ◽  
Author(s):  
Nahla Al Qassimi ◽  
Chuloh Jung

Due to hot desert weather, residents of the United Arab Emirates (UAE) spend 90% of their time indoors, and the interior environment of the newly built apartments with inappropriate material and ventilation is causing sick building syndrome (SBS), faster than in any other country. NASA studies on indoor air pollutants indicate that the usage of 15–18 air-purifying plants in 18–24 cm diameter containers can clean the air in an average 167.2 m2 house (approximately one plant per 9.2 m2). This study investigates the effect of three different types of air-purifying plants, Pachira aquatica, Ficus benjamina, and Aglaonema commutatum, in reducing volatile organic compounds (VOCs) and formaldehyde (CH2O) in hot desert climate. An experiment is performed in which the CH2O and VOCs concentrations are measured in two laboratory spaces (Room 1 and Room 2). Different volumes (5 and 10% of the laboratory volume) of target plants are installed in Room 1, whereas Room 2 is measured under the same conditions without plants for comparison. The results show that the greater the planting volume (10%), the greater is the reduction effect of each VOCs. In summer in hot desert climate, the initial concentration (800 µg/cm3) of CH2O and VOCs is higher, and the reduction amount is higher (534.5 µg/cm3) as well. The reduction amount of CH2O and toluene (C7H8) is particularly high. In the case of C7H8, the reduction amount (45.9 µg/cm3) is higher in summer with Aglaonema commutatum and Ficus benjamina. It is statistically proven that Ficus benjamina is most effective in reducing CH2O and C7H8 in an indoor space in hot desert climate. The findings of this study can serve as basic data for further improving the indoor air quality using only air-purifying plants in hot desert climate of the United Arab Emirates.


2022 ◽  
Vol 7 ◽  
Author(s):  
Theodore Cross ◽  
Flavia De Luca ◽  
Gregory E. D. Woods ◽  
Nicola Giordano ◽  
Rama Mohan Pokhrel ◽  
...  

Reinforced concrete (RC) with masonry infill is one of the most common structural typologies in Nepal, especially in the Kathmandu Valley. Masonry infills are typically made of solid clay bricks produced locally in Nepal. This study aims to calibrate the spectral-based analytical method, namely, FAST, for Nepalese RC-infilled buildings. The FAST method has been initially conceived for Southern European RC buildings with hollow clay brick infills. The calibration is achieved by reviewing code prescriptions and construction practices for RC masonry infills in Nepal and updating the FAST method. The variables of FAST method are calibrated using different information sources and a Bayesian updating procedure to consider the global and local material properties for solid clay bricks. The FAST-NEPAL method obtained is then verified, considering a single school design, for which a detailed state-of-the-art vulnerability assessment is available. Being particularly suitable for large-scale assessment, the method is further validated using data from Ward-35 of Kathmandu Metropolitan City (in the vicinity of Tribhuvan International Airport) obtained from photographic documentation included in a geo-referenced database of buildings collected after the 2015 Nepal earthquake and prepared for census purposes. The comparisons show that the FAST-NEPAL method can be conservative relative to the other data sources for vulnerability and is more accurate at capturing low-level damage. This makes the approach suitable for large-scale preliminary assessment of vulnerability for prioritisation purposes.


2022 ◽  
Vol 7 ◽  
Author(s):  
Müge Tetik ◽  
Antti Peltokorpi ◽  
Olli Seppänen ◽  
Jan Holmström

Logistics practices are processes that require alignment and coordination among project actors to support successful construction operations. While recent research has underlined the effects of single material logistics practices on project performance, practitioners need more knowledge on development paths toward successful overall logistics solutions. Based on a review of current practices obtained from the literature, this research proposes the maturity levels of planning, organizing, operating, use of technology, and information flow regarding the logistics practices in construction. Moreover, the study devises a recommended order for implementing logistics practices and investigates how companies can advance their logistics maturity from one level to the next. The proposed model has been validated via case examples from the industry. The paper contributes to construction logistics research by describing how companies can navigate development efforts to gradually improve their logistics practices. Future research could conduct more case studies within different project contexts.


2022 ◽  
Vol 7 ◽  
Author(s):  
Hazem Jadallah ◽  
Carol J. Friedland ◽  
Isabelina Nahmens ◽  
Charles Pecquet ◽  
Charles Berryman ◽  
...  

The construction industry is suffering, in part, from a lack of training programs offered to the construction workforce. Unfortunately, most construction training and education research focuses on university student education. Integrating education science theory into construction workforce training has the potential to improve industry training but there is a dearth of studies that present details of this integration process. To address this gap, a training framework was developed to educate material stakeholders on material properties, selection, and installation. This framework is based on andragogical and Universal Design for Learning (UDL) principles. An assessment method evaluates training agendas to improve upon instructional design before training implementation. This method assesses the proposed training framework by enumerating the occurrences of Bloom’s Taxonomy verbs to determine how closely the proposed training’s goals and objectives followed Bloom’s guidelines. This study culminates by establishing linkages from educational theory to proposed training modules. The module template is presented in a goals and objectives format so that organizations can best implement and test this training framework.


2022 ◽  
Vol 7 ◽  
Author(s):  
Fanglin Zhang ◽  
Philip M. Orton

Low-lying Coastal Landfill Neighborhoods (CLaNs) often have a large aspect ratio, defined here as the coastline length divided by neighborhood width, due to the common practice of reclaiming fringing wetlands along tidal waterways. Flood risk reduction for CLaNs frequently involves elevated barriers, in the form of berms, seawalls, or levees, which reduce risk but cannot completely eliminate residual risk (e.g., due to overtopping during extreme events). Managed retreat is an alternative approach for flood risk reduction, the general idea of which is to strategically ban development in hazard zones, relocate structures, and/or abandon land. This study aims at exploring the tradeoffs between elevated barriers and managed retreat in terms of both CLaN aspect ratio and storm climate, for both short-term and long-term risk reduction with sea-level rise. Hydrodynamic flood modeling of an idealized CLaN protected by different adaptation plans is used to simulate flood conditions and mortality for a range of storm surge amplitudes for both the present-day and under different sea-level rise scenarios. Results show that for a berm and a case of managed retreat of an equal cost, retreat becomes more beneficial than the berm in terms of mortality risk reduction for neighborhoods with a larger aspect ratio. The study also shows that berms are generally less effective for reducing mortality in regions with less common but higher intensity storms. This study reveals the potential of idealized modeling to provide fundamental insights on the physical factors influencing the efficacy of different adaptation strategies for mortality risk reduction.


2022 ◽  
Vol 7 ◽  
Author(s):  
R. S. McLeod ◽  
M. Mathew ◽  
D. Salman ◽  
C. L. P. Thomas

Young people spend extended periods of time in educational buildings, yet relatively little is known about the air quality in such spaces, or the long-term risks which contaminant exposure places on their health and development. Although standards exist in many countries in relation to indoor air quality in educational buildings, they are rarely subject to detailed post-occupancy evaluation. In this study a novel indoor air quality testing methodology is proposed and demonstrated in the context of assessing the post-occupancy performance of a recently refurbished architecture studio building at Loughborough University, United Kingdom. The approach used provides a monitoring process that was designed to evaluate air quality in accordance with United Kingdom national guidelines (Building Bulletin 101) and international (WELL Building) standards. Additional, scenario-based, testing was incorporated to isolate the presence and source of harmful volatile organic compounds, which were measured using diffusive sampling methods involving analysis by thermal desorption - gas chromatography - mass spectrometry techniques. The findings show that whilst the case-study building appears to perform well in respect to existing national and international standards, these guidelines only assess average CO2 concentrations and total volatile organic compound limits. The results indicate that existing standards, designed to protect the health and wellbeing of students, are likely to be masking potentially serious indoor air quality problems. The presence of numerous harmful VOCs found in this study indicates that an urgent revaluation of educational building procurement and air quality monitoring guidelines is needed.


2022 ◽  
Vol 7 ◽  
Author(s):  
Nedhal Al-Tamimi

This study aims to assess passive design features through the extensive modifications of building envelopes to affect the energy efficiency of residential buildings in hot arid climates. In support of the aim of this research, the annual electric energy bill of a typical residential building in Sharurah was collected and analyzed. Then, the DesignBuilder simulation program was used to investigate how different modifications of building envelopes could affect the energy consumption of the residential buildings under common scenarios. Varied thermal insulation, different types of glass, shading devices, and green roof were investigated with this perspective. The simulation results show that thermal insulation can significantly reduce annual energy consumption by as high as 23.6%, followed by green roofs. In contrast, shading devices and glazing system types were fewer superiors. The results also indicate that the effective combination of certain strategies can reduce total energy consumption by 35.4% relative to the base case (BC) of this research.


2022 ◽  
Vol 7 ◽  
Author(s):  
Kenji Sudo ◽  
Serina Maehara ◽  
Masahiro Nakaoka ◽  
Masahiko Fujii

Tropicalization characterized by an increase in marine species originating from the tropical waters affects human society in various ways. An increase in toxic harmful species negatively affects fisheries and leisure use, and an increase in herbivorous fish affects fisheries and carbon sink capacity by decreasing seagrass/seaweed beds. On the other hand, an increase in tropical reef fish attracts more tourism. This study aimed to predict future shifts in the distribution of functional groups of tropicalization indicator fish that can affect marine ecosystem services in temperate coastal waters of Japan. We estimated the distribution of harmful fish Aluterus scriptus and Scarus ovifrons, herbivorous fish Kyphosus bigibbus and Siganus fuscescens, and tropical reef fish Amphiprion frenatus and Chaetodon auriga by collecting their distribution data from open databases. Distributions in 2000–2018 and the future (2046–2055 and 2091–2100) under different climate change scenarios (the representative concentration pathways; RCPs) were estimated using a species distribution model. We used environmental variables such as minimum sea surface temperature (SST), depth, slope, coral reef area, and seagrass/seaweed bed area as predictors and carried out future predictions using the future ocean regional projection (FORP) dataset. The minimum SST was the factor most responsible for the estimated distribution patterns for all species. The depth, slope, and seagrass/seaweed bed were also important for some species. The estimated probability of occurrence was high along the Pacific coast, which was affected by the warm Kuroshio Current and Tsushima Current along the coast of the Sea of Japan. Projected shifts in distributions based on different RCP scenarios showed that these indicator species would significantly increase their distribution in the middle to northern parts of Japan (32–37°N). By the 2090s, their habitat range was estimated to increase to 1.2–1.9 times that of 2000-2018 with severe warming (RCP8.5). However, the target species habitat range would not change significantly with stringent mitigation (RCP2.6). Our results suggest that ambitious commitment to reducing CO2 and other greenhouse gas emissions, such as following the Paris Agreement, will alleviate future tropicalization. Moreover, the fine resolution results can also be directly used for planning climate adaptation programs for local decision makers.


2022 ◽  
Vol 7 ◽  
Author(s):  
Nobuhito Mori ◽  
Che-Wei Chang ◽  
Tomomi Inoue ◽  
Yasuaki Akaji ◽  
Ko Hinokidani ◽  
...  

Mangroves are able to attenuate tsunamis, storm surges, and waves. Their protective function against wave disasters is gaining increasing attention as a typical example of the green infrastructure/Eco-DRR (Ecosystem-based Disaster Risk Reduction) in coastal regions. Hydrodynamic models commonly employed additional friction or a drag forcing term to represent mangrove-induced energy dissipation for simplicity. The well-known Morison-type formula (Morison et al. 1950) has been considered appropriate to model vegetation-induced resistance in which the information of the geometric properties of mangroves, including the root system, is needed. However, idealized vegetation configurations mainly were applied in the existing numerical models, and only a few field observations provided the empirical parameterization of the complex mangrove root structures. In this study, we conducted field surveys on the Iriomote Island of Okinawa, Japan, and Tarawa, Kiribati. We measured the representative parameters for the geometric properties of mangroves, Rhizophora stylosa, and their root system. By analyzing the data, significant correlations for hydrodynamic modeling were found among the key parameters such as the trunk diameter at breast height (DBH), the tree height H, the height of prop roots, and the projected areas of the root system. We also discussed the correlation of these representative factors with the tree age. These empirical relationships are summarized for numerical modeling at the end.


2021 ◽  
Vol 7 ◽  
Author(s):  
Maria Camila Coronado ◽  
Siobhan Rockcastle ◽  
Alison Kwok

At the start of the COVID-19 pandemic, multiple institutions mobilized to create recommendations that maximize indoor environmental quality to keep building occupants as safe as possible. Many of those recommendations were implemented in buildings across the world even before the presence of field data validated their effectiveness. However, as the pandemic raised awareness of the risks present in the air quality of everyday built environments, little is known about how occupants perceive these interventions or how they will perceive buildings when activities resume with an in-person requirement. This paper presents results from an online survey, conducted from April 23rd to May 8th, 2021, and offers a window into the perceptions of university students on a variety of physical intervention strategies that have been promoted for the return to classrooms. Our analysis explores differences in these perceptions between students from Colombia and the United States, where the vaccination rates of the population as of May 2021 differed substantially. An anonymous online survey was disseminated to students of higher academic institutions using images portraying 3D models of classrooms and written prompts to assess perceptions. Health risk and health promotion perceptions were evaluated using four categories: visual connection to the outdoors, occupant density, additional furnishings, ventilation system type, and number of operable windows. While the effectiveness of these strategies from an epidemiological standpoint was not considered, this survey aimed to measure the perceived effectiveness of these strategies as students prepare to return to in-person education in the classroom. Our analysis found a significant effect of different degrees of “connection to the outdoors” and “occupant density” on both perceived health risk and health promotion in both countries. Respondents ranked strategies like mask-wearing and natural ventilation as important interventions when considering a return to the classroom. Perceptions of health risk and health promotion between students taking classes in the United States and Colombia were significantly different regarding the presence of additional furnishings, and ventilation systems and number of windows in a classroom. The results presented here may shed light on how aspects of the built environment help shape perceptions of healthy environments during the pandemic.


Sign in / Sign up

Export Citation Format

Share Document