scholarly journals The HETDEX Instrumentation: Hobby–Eberly Telescope Wide-field Upgrade and VIRUS

2021 ◽  
Vol 162 (6) ◽  
pp. 298
Author(s):  
Gary J. Hill ◽  
Hanshin Lee ◽  
Phillip J. MacQueen ◽  
Andreas Kelz ◽  
Niv Drory ◽  
...  

Abstract The Hobby–Eberly Telescope (HET) Dark Energy Experiment (HETDEX) is undertaking a blind wide-field low-resolution spectroscopic survey of 540 deg2 of sky to identify and derive redshifts for a million Lyα-emitting galaxies in the redshift range 1.9 < z < 3.5. The ultimate goal is to measure the expansion rate of the universe at this epoch, to sharply constrain cosmological parameters and thus the nature of dark energy. A major multiyear Wide-Field Upgrade (WFU) of the HET was completed in 2016 that substantially increased the field of view to 22′ diameter and the pupil to 10 m, by replacing the optical corrector, tracker, and Prime Focus Instrument Package and by developing a new telescope control system. The new, wide-field HET now feeds the Visible Integral-field Replicable Unit Spectrograph (VIRUS), a new low-resolution integral-field spectrograph (LRS2), and the Habitable Zone Planet Finder, a precision near-infrared radial velocity spectrograph. VIRUS consists of 156 identical spectrographs fed by almost 35,000 fibers in 78 integral-field units arrayed at the focus of the upgraded HET. VIRUS operates in a bandpass of 3500−5500 Å with resolving power R ≃ 800. VIRUS is the first example of large-scale replication applied to instrumentation in optical astronomy to achieve spectroscopic surveys of very large areas of sky. This paper presents technical details of the HET WFU and VIRUS, as flowed down from the HETDEX science requirements, along with experience from commissioning this major telescope upgrade and the innovative instrumentation suite for HETDEX.

2021 ◽  
Vol 502 (3) ◽  
pp. 3942-3954
Author(s):  
D Hung ◽  
B C Lemaux ◽  
R R Gal ◽  
A R Tomczak ◽  
L M Lubin ◽  
...  

ABSTRACT We present a new mass function of galaxy clusters and groups using optical/near-infrared (NIR) wavelength spectroscopic and photometric data from the Observations of Redshift Evolution in Large-Scale Environments (ORELSE) survey. At z ∼ 1, cluster mass function studies are rare regardless of wavelength and have never been attempted from an optical/NIR perspective. This work serves as a proof of concept that z ∼ 1 cluster mass functions are achievable without supplemental X-ray or Sunyaev-Zel’dovich data. Measurements of the cluster mass function provide important contraints on cosmological parameters and are complementary to other probes. With ORELSE, a new cluster finding technique based on Voronoi tessellation Monte Carlo (VMC) mapping, and rigorous purity and completeness testing, we have obtained ∼240 galaxy overdensity candidates in the redshift range 0.55 &lt; z &lt; 1.37 at a mass range of 13.6 &lt; log (M/M⊙) &lt; 14.8. This mass range is comparable to existing optical cluster mass function studies for the local universe. Our candidate numbers vary based on the choice of multiple input parameters related to detection and characterization in our cluster finding algorithm, which we incorporated into the mass function analysis through a Monte Carlo scheme. We find cosmological constraints on the matter density, Ωm, and the amplitude of fluctuations, σ8, of $\Omega _{m} = 0.250^{+0.104}_{-0.099}$ and $\sigma _{8} = 1.150^{+0.260}_{-0.163}$. While our Ωm value is close to concordance, our σ8 value is ∼2σ higher because of the inflated observed number densities compared to theoretical mass function models owing to how our survey targeted overdense regions. With Euclid and several other large, unbiased optical surveys on the horizon, VMC mapping will enable optical/NIR cluster cosmology at redshifts much higher than what has been possible before.


2020 ◽  
Vol 645 ◽  
pp. A12
Author(s):  
B. Balmaverde ◽  
A. Capetti ◽  
A. Marconi ◽  
G. Venturi ◽  
M. Chiaberge ◽  
...  

We present the final observations of a complete sample of 37 radio galaxies from the Third Cambridge Catalogue (3C) with redshift < 0.3 and declination < 20° obtained with the VLT/MUSE optical integral field spectrograph. These data were obtained as part of the MUse RAdio Loud Emission line Snapshot (MURALES) survey with the main goal of exploring the AGN feedback process in the most powerful radio sources. We present the data analysis and, for each source, the resulting emission line images and the 2D gas velocity field. Thanks to the unprecedented depth these observations reveal emission line regions (ELRs) extending several tens of kiloparsec in most objects. The gas velocity shows ordered rotation in 25 galaxies, but in several sources it is highly complex. We find that the 3C sources show a connection between radio morphology and emission line properties. In the ten FR I sources the line emission region is generally compact, only a few kpc in size; only in one case does it exceed the size of the host. Conversely, all but two of the FR II galaxies show large-scale structures of ionized gas. The median extent is 16 kpc with the maximum reaching a size of ∼80 kpc. There are no apparent differences in extent or strength between the ELR properties of the FR II sources of high and low gas excitation. We confirm that the previous optical identification of 3C 258 is incorrect: this radio source is likely associated with a quasi-stellar object at z ∼ 1.54.


2019 ◽  
Vol 489 (4) ◽  
pp. 5653-5668 ◽  
Author(s):  
L G Dahmer-Hahn ◽  
R Riffel ◽  
T V Ricci ◽  
J E Steiner ◽  
T Storchi-Bergmann ◽  
...  

ABSTRACT We map the optical and near-infrared (NIR) emission-line flux distributions and kinematics of the inner 320 × 535 pc2 of the elliptical galaxy NGC 1052. The integral field spectra were obtained with the Gemini Telescope using the GMOS-IFU and NIFS instruments, with angular resolutions of 0.88 and 0.1 arcsec in the optical and NIR, respectively. We detect five kinematic components: (1) and (2) two spatially unresolved components: a broad-line region visible in H α, with a full width at half-maximum (FWHM) of ∼3200 km s−1, and an intermediate broad component seen in the [O iii] λλ4959,5007 doublet; (3) an extended intermediate-width component with 280 km s−1 < FWHM < 450 km s−1 and centroid velocities up to 400 km s−1, which dominates the flux in our data, attributed either to a bipolar outflow related to the jets, rotation in an eccentric disc or to a combination of a disc and large-scale gas bubbles; (4) and (5) two narrow (FWHM < 150 km s−1) components, one visible in [O iii], and another visible in the other emission lines, extending beyond the field of view of our data, which is attributed to large-scale shocks. Our results suggest that the ionization within the observed field of view cannot be explained by a single mechanism, with photoionization being the dominant mechanism in the nucleus with a combination of shocks and photoionization responsible for the extended ionization.


1995 ◽  
Vol 149 ◽  
pp. 298-299
Author(s):  
P. Martin ◽  
P.C. Pinet ◽  
R. Bacon ◽  
A. Rousset

AbstractHigh spectral and spatial resolution telescopic observations of the western hemisphere of Mars, using the integral field spectrograph TIGER at 0.8-1.1 µm, are described.


2019 ◽  
Vol 627 ◽  
pp. A115 ◽  
Author(s):  
M. Rigault ◽  
J. D. Neill ◽  
N. Blagorodnova ◽  
A. Dugas ◽  
M. Feeney ◽  
...  

Current time domain facilities are discovering hundreds of new galactic and extra-galactic transients every week. Classifying the ever-increasing number of transients is challenging, yet crucial to furthering our understanding of their nature, discovering new classes, and ensuring sample purity, for instance, for Supernova Ia cosmology. The Zwicky Transient Facility is one example of such a survey. In addition, it has a dedicated very-low resolution spectrograph, the SEDMachine, operating on the Palomar 60-inch telescope. This spectrograph’s primary aim is object classification. In practice most, if not all, transients of interest brighter than ∼19 mag are typed. This corresponds to approximately 10–15 targets a night. In this paper, we present a fully automated pipeline for the SEDMachine. This pipeline has been designed to be fast, robust, stable and extremely flexible. pysedm enables the fully automated spectral extraction of a targeted point source object in less than five minutes after the end of the exposure. The spectral color calibration is accurate at the few percent level. In the 19 weeks since pysedm entered production in early August of 2018, we have classified, among other objects, about 400 Type Ia supernovae and 140 Type II supernovae. We conclude that low resolution, fully automated spectrographs such as the “SEDMachine with pysedm” installed on 2-m class telescopes within the southern hemisphere could allow us to automatically and simultaneously type and obtain a redshift for most (if not all) bright transients detected by LSST within z <  0.2, notably potentially all Type Ia Supernovae. In comparison with the current SEDM design, this would require higher spectral resolution (R ≳ 1000) and slightly improved throughput. With this perspective in mind, pysedm is designed to easily be adaptable to any IFU-like spectrograph.


2017 ◽  
Vol 13 (S334) ◽  
pp. 242-247
Author(s):  
Luca Pasquini ◽  
B. Delabre ◽  
R. S. Ellis ◽  
J. Marrero ◽  
L. Cavaller ◽  
...  

AbstractWe present the concept of a novel facility dedicated to massively-multiplexed spectroscopy. The telescope has a very wide field Cassegrain focus optimised for fibre feeding. With a Field of View (FoV) of 2.5 degrees diameter and a 11.4m pupil, it will be the largest etendue telescope. The large focal plane can easily host up to 16.000 fibres. In addition, a gravity invariant focus for the central 10 arc-minutes is available to host a giant integral field unit (IFU). The 3 lenses corrector includes an ADC, and has good performance in the 360-1300 nm wavelength range. The top level science requirements were developed by a dedicated ESO working group, and one of the primary cases is high resolution spectroscopy of GAIA stars and, in general, how our Galaxy formed and evolves. The facility will therefore be equipped with both, high and low resolution spectrographs. We stress the importance of developing the telescope and instrument designs simultaneously. The most relevant R&amp;D aspect is also briefly discussed.


Author(s):  
Malcolm S. Longair

Since 1980, our empirical knowledge of the universe has advanced tremendously and precision cosmology has become a reality. These developments have been largely technology-driven, the result of increased computer power, new generations of telescopes for all wavebands, new types of semiconductor detectors, such as CCDs, and major investments by many nations in superb observing facilities. The discipline also benefitted from the influx of experimental and theoretical physicists into the cosmological arena. The accuracy and reliability of the values of the cosmological parameters has improved dramatically, many of them now being known to about 1%. The ΛCDM model provides a remarkable fit to all the observational data, demonstrating that the cosmological constant is non-zero and that the global geometry of the universe is flat. The underlying physics of galaxy and large-scale structure formation has advanced dramatically and demonstrated the key roles played by dark matter and dark energy.


Sign in / Sign up

Export Citation Format

Share Document