scholarly journals Molecular Gas within the Milky Way's Nuclear Wind

2021 ◽  
Vol 923 (1) ◽  
pp. L11
Author(s):  
Frances H. Cashman ◽  
Andrew J. Fox ◽  
Blair D. Savage ◽  
Bart P. Wakker ◽  
Dhanesh Krishnarao ◽  
...  

Abstract We report the first direct detection of molecular hydrogen associated with the Galactic nuclear wind. The Far-Ultraviolet Spectroscopic Explorer spectrum of LS 4825, a B1 Ib–II star at l, b = 1.67°,−6.63° lying d = 9.9 − 0.8 + 1.4 kpc from the Sun, ∼1 kpc below the Galactic plane near the Galactic center, shows two high-velocity H2 components at v LSR = −79 and −108 km s−1. In contrast, the FUSE spectrum of the nearby (∼0.6° away) foreground star HD 167402 at d = 4.9 − 0.7 + 0.8 kpc reveals no H2 absorption at these velocities. Over 60 lines of H2 from rotational levels J = 0 to 5 are identified in the high-velocity clouds. For the v LSR = −79 km s−1 cloud we measure total log N(H2) ≥ 16.75 cm−2, molecular fraction f H 2 ≥ 0.8%, and T 01 ≥ 97 and T 25 ≤ 439 K for the ground- and excited-state rotational excitation temperatures. At v LSR = −108 km s−1, we measure log N(H2) = 16.13 ± 0.10 cm−2, f H 2 ≥ 0.5%, and T 01 = 77 − 18 + 34 and T 25 = 1092 − 117 + 149 K, for which the excited-state ortho- to para-H2 is 1.0 − 0.1 + 0.3 , much less than the equilibrium value of 3 expected for gas at this temperature. This nonequilibrium ratio suggests that the −108 km s−1 cloud has been recently excited and has not yet had time to equilibrate. As the LS 4825 sight line passes close by a tilted section of the Galactic disk, we propose that we are probing a boundary region where the nuclear wind is removing gas from the disk.

1997 ◽  
Vol 166 ◽  
pp. 451-454
Author(s):  
Harald Lesch ◽  
Guido T. Birk

AbstractThe boundaries of high-velocity-clouds that hit the Galactic plane are sources of strong X-ray emission indicating gas temperatures of a few million Kelvin. We show that numerous individual magnetic reconnection processes in the interaction region between an HVC and the ionized Reynolds layer may cause the gas heating via dynamical Ohmic dissipation. We present results of numerical plasmaneutral gas fluid simulations performed to study the dynamical reconnection process and to calculate the conversion of magnetic energy into heat.


2011 ◽  
Vol 28 (2) ◽  
pp. 171-176 ◽  
Author(s):  
P. P. Kronberg ◽  
K. J. Newton-McGee

AbstractWe apply a new, expanded compilation of extragalactic source Faraday rotation measures (RM) to investigate the broad underlying magnetic structure of the Galactic disk at latitudes ∣b∣ ≲15° over all longitudes l, where our total number of RMs is comparable to those in the combined Canadian Galactic Plane Survey (CGPS) at ∣b∣ < 4° and the Southern Galactic Plane (SGPS) ∣b∣<1.5°. We report newly revealed, remarkably coherent patterns of RM at ∣b∣≲15° from l∼270° to ∼90° and RM(l) features of unprecedented clarity that replicate in l with opposite sign on opposite sides of the Galactic center. They confirm a highly patterned bisymmetric field structure toward the inner disc, an axisymmetic pattern toward the outer disc, and a very close coupling between the CGPS/SGPS RMs at ∣b∣≲3° (‘mid-plane’) and our new RMs up to ∣b∣∼15° (‘near-plane’). Our analysis also shows the vertical height of the coherent component of the disc field above the Galactic disc's mid-plane—to be ∼1.5 kpc out to ∼6 kpc from the Sun. This identifies the approximate height of a transition layer to the halo field structure. We find no RM sign change across the plane within ∣b∣∼15° in any longitude range. The prevailing disc field pattern and its striking degree of large-scale ordering confirm that our side of the Milky Way has a very organized underlying magnetic structure, for which the inward spiral pitch angle is 5.5°±1° at all ∣b∣ up to ∼12° in the inner semicircle of Galactic longitudes. It decreases to ∼0° toward the anticentre.


2008 ◽  
Vol 4 (S259) ◽  
pp. 455-466 ◽  
Author(s):  
JinLin Han

AbstractThe magnetic structure in the Galactic disk, the Galactic center and the Galactic halo can be delineated more clearly than ever before. In the Galactic disk, the magnetic structure has been revealed by starlight polarization within 2 or 3 kpc of the Solar vicinity, by the distribution of the Zeeman splitting of OH masers in two or three nearby spiral arms, and by pulsar dispersion measures and rotation measures in nearly half of the disk. The polarized thermal dust emission of clouds at infrared, mm and submm wavelengths and the diffuse synchrotron emission are also related to the large-scale magnetic field in the disk. The rotation measures of extragalactic radio sources at low Galactic latitudes can be modeled by electron distributions and large-scale magnetic fields. The statistical properties of the magnetized interstellar medium at various scales have been studied using rotation measure data and polarization data. In the Galactic center, the non-thermal filaments indicate poloidal fields. There is no consensus on the field strength, maybe mG, maybe tens of μG. The polarized dust emission and much enhanced rotation measures of background radio sources are probably related to toroidal fields. In the Galactic halo, the antisymmetric RM sky reveals large-scale toroidal fields with reversed directions above and below the Galactic plane. Magnetic fields from all parts of our Galaxy are connected to form a global field structure. More observations are needed to explore the untouched regions and delineate how fields in different parts are connected.


2017 ◽  
Author(s):  
Ana Laura Müller ◽  
Gustavo Esteban Romero ◽  
Maŕıa Victoria del Valle

2009 ◽  
Vol 5 (S266) ◽  
pp. 482-482
Author(s):  
Xiaoying Pang ◽  
Chenggang Shu

AbstractThe WEBDA database of open clusters (hereafter OCs) in the Galaxy contains 970 OCs, of which 911 have age determinations, 920 have distance measurements, and 911 have color-excess data. Base on the statistical analysis of global properties of open clusters, we investigate disk properties such as the height above the Galactic plane. We find that old open clusters (age ≥ 1 Gyr) are preferentially located far from the Galactic plane with 〈|z|〉~394.5 pc. They lie in the outer part of the Galactic disk. The young open clusters are distributed in the Galactic plane almost symmetrically with respect to the Sun, with a scale height perpendicular to the Galactic plane of 50.5 pc. The age distribution of open clusters can be fit approximately with a two-component exponential decay function: one component has an age scale factor of 225.2 Myr, and the other consists of longer-lived clusters with an age scale of 1.8 Gyr, which are smaller than those derived by Janes & Phelps (1994) of 200 Myr and 4 Gyr for the young and old OCs, respectively. As a consequence of completeness effects, the observed radial distribution of OCs with respect to Galactocentric distance does not follow the expected exponential profile. Instead, it falls off both for regions external to the solar circle and more sharply towards the Galactic Center, which is probably due to giant molecular cloud disruption in the center. We simulate the effects of completeness, assuming that the observed distribution of the number of OCs with a given number of stars above the background is representative of the intrinsic distribution of OCs throughout the Galaxy. Two simulation models are considered, in which the intrinsic number of the observable stars are distributed (i) assuming the actual positions of the OCs in the sample, and (ii) random selection of OC positions. As a result, we derive completeness-corrected radial distributions which agree with an exponential disk throughout the observed Galactocentric distance in the range of 5–15 kpc, with scale lengths in the range of 1.6–2.8 kpc.


1989 ◽  
Vol 120 ◽  
pp. 416-423
Author(s):  
Bart P. Wakker

For almost three decades neutral hydrogen moving at velocities unexplicable by galactic rotation has been observed. These so-called high-velocity clouds (HVCs) have been invoked as evidence for infall of neutral gas to the galaxy, as manifestations of a galactic fountain, as energy source for the formation of supershells, etc. No general consensus about their origin has presently been reached. However, it is becoming clear that no single model will suffice to explain all HVCs. A number of clouds may consist of material streaming toward the galactic center, as Mirabel (this conference) has advocated for several years, though their origin still remains unclear. A better understanding is mainly hampered by the fact that the distance remains unknown. An overview of the current status of the distance problem is given by van Woerden elsewhere in this volume.


1989 ◽  
Vol 120 ◽  
pp. 494-499
Author(s):  
J.B.G.M. Bloemen

SummaryAs an illustration of what the next generation of γ-ray telescopes may show us, an up-to-date COS-B ‘finding chart’ of potential γ-ray point sources and unexplained extended γ-ray features is presented. The latter, in particular, may be related to energetic phenomena in the interstellar medium, capable of enhancing the local cosmic-ray density. As an example, a prominent feature, extending over at least 10° — 15° almost perpendicular to the Galactic disk, is discussed in some detail, linking it to the giant HII region S54 and Complex C of high-velocity clouds.


1999 ◽  
Vol 515 (2) ◽  
pp. 657-668 ◽  
Author(s):  
Alfredo Santillan ◽  
Jose Franco ◽  
Marco Martos ◽  
Jongsoo Kim

1979 ◽  
Vol 84 ◽  
pp. 61-63
Author(s):  
F. J. Kerr

This review of 21-cm studies of the galactic disk will be rather short, because several aspects of such studies are being covered by other speakers. These include the galactic rotation curve, the warp, the outer limits of the hydrogen layer, high-velocity clouds, large supernova remnants and comparisons between observations and theory with respect to density waves.


Sign in / Sign up

Export Citation Format

Share Document