Analyze Eddy Current Loss in the Three Phase 100 kVA Transformer Core with the Mix 60°-0° T-joint Core

2012 ◽  
Vol 6 (1) ◽  
pp. 122-128 ◽  
Author(s):  
Dina Maizana
2011 ◽  
Vol 304 ◽  
pp. 41-47 ◽  
Author(s):  
Zhi Gang Zhao ◽  
Fu Gui Liu ◽  
You Hua Wang ◽  
Peng Xiang Ren ◽  
Yu Huai Kan

With the advent of power electronic technology, the excitation conditions applied to transformers, motors, etc. could be very atypical. DC bias excitation is an undesired working condition of AC power transformers, the asymmetrical saturation of the transformer core, the heavy noise, the serious vibration, and the local loss concentration can all potentially occurred in dc-biased transformers. The effect of the exciting current under different dc-biased magnetization on eddy-current loss in copper plate based on a reduced engineering-oriented benchmark model (TEAM Problem 21) is investigated. Experiment scheme for dc biasing is presented and the distribution of the eddy current loss under different dc-biased excitation conditions was studied in detail. The engineering applicability of three dimensional eddy current analysis methods for dc-biased magnetization field computation and the practical loss modeling are examined, which has been demonstrated via the numerical modeling results and the measured data.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 959-967
Author(s):  
Se-Yeong Kim ◽  
Tae-Woo Lee ◽  
Yon-Do Chun ◽  
Do-Kwan Hong

In this study, we propose a non-contact 80 kW, 60,000 rpm coaxial magnetic gear (CMG) model for high speed and high power applications. Two models with the same power but different radial and axial sizes were optimized using response surface methodology. Both models employed a Halbach array to increase torque. Also, an edge fillet was applied to the radial magnetized permanent magnet to reduce torque ripple, and an axial gap was applied to the permanent magnet with a radial gap to reduce eddy current loss. The models were analyzed using 2-D and 3-D finite element analysis. The torque, torque ripple and eddy current loss were compared in both models according to the materials used, including Sm2Co17, NdFeBs (N42SH, N48SH). Also, the structural stability of the pole piece structure was investigated by forced vibration analysis. Critical speed results from rotordynamics analysis are also presented.


2009 ◽  
Vol 129 (11) ◽  
pp. 1022-1029 ◽  
Author(s):  
Katsumi Yamazaki ◽  
Yuji Kanou ◽  
Yu Fukushima ◽  
Shunji Ohki ◽  
Akira Nezu ◽  
...  

Actuators ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 78
Author(s):  
Tomislav Strinić ◽  
Bianca Wex ◽  
Gerald Jungmayr ◽  
Thomas Stallinger ◽  
Jörg Frevert ◽  
...  

A sealless pump, also known as a wet rotor pump or a canned pump, requires a stationary sleeve in the air gap to protect the stator from a medium that flows around the rotor and the pump impeller. Since the sleeve is typically made from a non-magnetic electrically conductive material, the time-varying magnetic flux density in the air gap creates an eddy current loss in the sleeve. Precise assessment of this loss is crucial for the design of the pump. This paper presents a method for calculating the eddy current loss in such sleeves by using only a two-dimensional (2D) finite element method (FEM) solver. The basic idea is to use the similar structure of Ampère’s circuital law and Faraday’s law of induction to solve eddy current problems with a magnetostatic solver. The theoretical background behind the proposed method is explained and applied to the sleeve of a sealless pump. Finally, the results obtained by a 2D FEM approach are verified by three-dimensional FEM transient simulations.


2000 ◽  
Vol 36 (4) ◽  
pp. 1132-1137 ◽  
Author(s):  
J.R. Brauer ◽  
Z.J. Cendes ◽  
B.C. Beihoff ◽  
K.P. Phillips

2009 ◽  
Vol 19 (3) ◽  
pp. 2851-2854 ◽  
Author(s):  
M. Staines ◽  
K.P. Thakur ◽  
L.S. Lakshmi ◽  
S. Rupp

Sign in / Sign up

Export Citation Format

Share Document