scholarly journals Weighted fourth order elliptic problems in the unit ball

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Zongming Guo ◽  
Fangshu Wan

<p style='text-indent:20px;'>Existence and uniqueness of positive radial solutions of some weighted fourth order elliptic Navier and Dirichlet problems in the unit ball <inline-formula><tex-math id="M1">\begin{document}$ B $\end{document}</tex-math></inline-formula> are studied. The weights can be singular at <inline-formula><tex-math id="M2">\begin{document}$ x = 0 \in B $\end{document}</tex-math></inline-formula>. Existence of positive radial solutions of the problems is obtained via variational methods in the weighted Sobolev spaces. To obtain the uniqueness results, we need to know exactly the asymptotic behavior of the solutions at the singular point <inline-formula><tex-math id="M3">\begin{document}$ x = 0 $\end{document}</tex-math></inline-formula>.</p>

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Limei Dai

AbstractIn this paper, we study the Monge–Ampère equations $\det D^{2}u=f$ det D 2 u = f in dimension two with f being a perturbation of $f_{0}$ f 0 at infinity. First, we obtain the necessary and sufficient conditions for the existence of radial solutions with prescribed asymptotic behavior at infinity to Monge–Ampère equations outside a unit ball. Then, using the Perron method, we get the existence of viscosity solutions with prescribed asymptotic behavior at infinity to Monge–Ampère equations outside a bounded domain.


2015 ◽  
Vol 26 (03) ◽  
pp. 1550026 ◽  
Author(s):  
L. Caso ◽  
R. D'Ambrosio

We prove some uniqueness results for Dirichlet problems for second-order linear elliptic partial differential equations in non-divergence form with singular data in suitable weighted Sobolev spaces, on an open subset Ω of ℝn, n ≥ 2, not necessarily bounded or regular.


2019 ◽  
Vol 61 (3) ◽  
pp. 305-319
Author(s):  
CRISTIAN-PAUL DANET

This paper is concerned with the problem of existence and uniqueness of weak and classical solutions for a fourth-order semilinear boundary value problem. The existence and uniqueness for weak solutions follows from standard variational methods, while similar uniqueness results for classical solutions are derived using maximum principles.


2019 ◽  
Vol 61 ◽  
pp. 305-319
Author(s):  
Cristian Paul Danet

This paper is concerned with the problem of existence and uniqueness of weak and classical solutions for a fourth-order semilinear boundary value problem. The existence and uniqueness for weak solutions follows from standard variational methods, while similar uniqueness results for classical solutions are derived using maximum principles. doi:10.1017/S1446181119000129


2012 ◽  
Vol 12 (2) ◽  
Author(s):  
Shinji Adachi ◽  
Tatsuya Watanabe

AbstractWe are concerned with the asymptotic behavior of positive radial solutions for a class of quasilinear elliptic equation arising from plasma physics. By the variational argument and dual approach, we show the asymptotic uniqueness and non-degeneracy of the ground state.


Author(s):  
Imed Bachar ◽  
Habib Mâagli

AbstractUsing estimates on the Green function and a perturbation argument, we prove the existence and uniqueness of a positive continuous solution to problem:


Sign in / Sign up

Export Citation Format

Share Document