monge ampere
Recently Published Documents


TOTAL DOCUMENTS

1177
(FIVE YEARS 216)

H-INDEX

43
(FIVE YEARS 5)

2022 ◽  
Vol 309 ◽  
pp. 608-649
Author(s):  
Ki-Ahm Lee ◽  
Taehun Lee ◽  
Jinwan Park

2022 ◽  
Vol 120 (1) ◽  
Author(s):  
Tristan C. Collins ◽  
Tomoyuki Hisamoto ◽  
Ryosuke Takahashi

2021 ◽  
Vol 14 (3) ◽  
pp. 206-218
Author(s):  
Vasyl Fedorchuk ◽  
Volodymyr Fedorchuk

We study the relationship between structural properties of the two-dimensional nonconjugate subalgebras of the same rank of the Lie algebra of the Poincaré group P(1,4) and the properties of reduced equations for the (1+3)-dimensional homogeneous Monge-Ampère equation. In this paper, we present some of the results obtained concerning symmetry reduction of the equation under investigation to identities. Some classes of the invariant solutions (with arbitrary smooth functions) are presented.


Axioms ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 337
Author(s):  
Tatyana V. Redkina ◽  
Robert G. Zakinyan ◽  
Arthur R. Zakinyan ◽  
Olga V. Novikova

This work aims to obtain new transformations and auto-Bäcklund transformations for generalized Liouville equations with exponential nonlinearity having a factor depending on the first derivatives. This paper discusses the construction of Bäcklund transformations for nonlinear partial second-order derivatives of the soliton type with logarithmic nonlinearity and hyperbolic linear parts. The construction of transformations is based on the method proposed by Clairin for second-order equations of the Monge–Ampere type. For the equations studied in the article, using the Bäcklund transformations, new equations are found, which make it possible to find solutions to the original nonlinear equations and reveal the internal connections between various integrable equations.


Author(s):  
S. Berjawi ◽  
E. V. Ferapontov ◽  
B. S. Kruglikov ◽  
V. S. Novikov

AbstractEinstein–Weyl geometry is a triple $$({\mathbb {D}},g,\omega )$$ ( D , g , ω ) where $${\mathbb {D}}$$ D is a symmetric connection, [g] is a conformal structure and $$\omega $$ ω is a covector such that $$\bullet $$ ∙ connection $${\mathbb {D}}$$ D preserves the conformal class [g], that is, $${\mathbb {D}}g=\omega g$$ D g = ω g ; $$\bullet $$ ∙ trace-free part of the symmetrised Ricci tensor of $${\mathbb {D}}$$ D vanishes. Three-dimensional Einstein–Weyl structures naturally arise on solutions of second-order dispersionless integrable PDEs in 3D. In this context, [g] coincides with the characteristic conformal structure and is therefore uniquely determined by the equation. On the contrary, covector $$\omega $$ ω is a somewhat more mysterious object, recovered from the Einstein–Weyl conditions. We demonstrate that, for generic second-order PDEs (for instance, for all equations not of Monge–Ampère type), the covector $$\omega $$ ω is also expressible in terms of the equation, thus providing an efficient ‘dispersionless integrability test’. The knowledge of g and $$\omega $$ ω provides a dispersionless Lax pair by an explicit formula which is apparently new. Some partial classification results of PDEs with Einstein–Weyl characteristic conformal structure are obtained. A rigidity conjecture is proposed according to which for any generic second-order PDE with Einstein–Weyl property, all dependence on the 1-jet variables can be eliminated via a suitable contact transformation.


2021 ◽  
Vol 15 ◽  
Author(s):  
Kangsong Ji ◽  
Huahao Shou ◽  
Yan Liu

Background: The equations of Monge–Ampère type which arise in geometric optics is used to design illumination lenses and mirrors. The optical design problem can be formulated as an inverse problem: determine an optical system consisting of reflector and/or refractor that converts a given light distribution of the source into a desired target light distribution. For two decades, the development of fast and reliable numerical design algorithms for the calculation of freeform surfaces for irradiance control in the geometrical optics limit is of great interest in current research. Objective: The objective of this paper is to summarize the types, algorithms and applications of Monge–Ampère equations. It helps scholars to grasp the research status of Monge–Ampère equations better and to explore the theory of Monge–Ampère equations further. Methods: This paper reviews the theory and applications of Monge–Ampère equations from four aspects. We first discuss the concept and development of Monge–Ampère equations. Then we derive two different cases of Monge–Ampère equations. We also list the numerical methods of Monge–Ampère equation in actual scenes. Finally, the paper gives a brief summary and an expectation. Results: The paper gives a brief introduction to the relevant papers and patents of the numerical solution of Monge–Ampère equations. There are quite a lot of literatures on the theoretical proofs and numerical calculations of Monge–Ampère equations. Conclusion: Monge–Ampère equation has been widely applied in geometric optics field since the predetermined energy distribution and the boundary condition creation can be well satisfied. Although the freeform surfaces designing by the Monge–Ampère equations is developing rapidly, there are still plenty of rooms for development in the design of the algorithms.


Analysis ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Masaya Kawamura

Abstract We investigate Monge–Ampère type fully nonlinear equations on compact almost Hermitian manifolds with boundary and show a priori gradient estimates for a smooth solution of these equations.


Sign in / Sign up

Export Citation Format

Share Document