scholarly journals A posteriori error estimates of hp spectral element method for parabolic optimal control problems

2022 ◽  
Vol 7 (4) ◽  
pp. 5220-5240
Author(s):  
Zuliang Lu ◽  
◽  
Fei Cai ◽  
Ruixiang Xu ◽  
Chunjuan Hou ◽  
...  

<abstract><p>In this paper, we investigate the spectral element approximation for the optimal control problem of parabolic equation, and present a hp spectral element approximation scheme for the parabolic optimal control problem. For improve the accuracy of the algorithm and construct an adaptive finite element approximation. Under the Scott-Zhang type quasi-interpolation operator, a $ L^2(H^1)-L^2(L^2) $ posteriori error estimates of the hp spectral element approximated solutions for both the state variables and the control variable are obtained. Adopting two auxiliary equations and stability results, a $ L^2(L^2)-L^2(L^2) $ posteriori error estimates are derived for the hp spectral element approximation of optimal parabolic control problem.</p></abstract>

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Zhen-Zhen Tao ◽  
Bing Sun

<p style='text-indent:20px;'>This paper is concerned with the Galerkin spectral approximation of an optimal control problem governed by the elliptic partial differential equations (PDEs). Its objective functional depends on the control variable governed by the <inline-formula><tex-math id="M1">\begin{document}$ L^2 $\end{document}</tex-math></inline-formula>-norm constraint. The optimality conditions for both the optimal control problem and its corresponding spectral approximation problem are given, successively. Thanks to some lemmas and the auxiliary systems, a priori error estimates of the Galerkin spectral approximation problem are established in detail. Moreover, a posteriori error estimates of the spectral approximation problem are also investigated, which include not only <inline-formula><tex-math id="M2">\begin{document}$ H^1 $\end{document}</tex-math></inline-formula>-norm error for the state and co-state but also <inline-formula><tex-math id="M3">\begin{document}$ L^2 $\end{document}</tex-math></inline-formula>-norm error for the control, state and costate. Finally, three numerical examples are executed to demonstrate the errors decay exponentially fast.</p>


2013 ◽  
Vol 2013 ◽  
pp. 1-11
Author(s):  
Zuliang Lu

The aim of this work is to study the semidiscrete finite element discretization for a class of semilinear parabolic integrodifferential optimal control problems. We derive a posteriori error estimates inL2(J;L2(Ω))-norm andL2(J;H1(Ω))-norm for both the control and coupled state approximations. Such estimates can be used to construct reliable adaptive finite element approximation for semilinear parabolic integrodifferential optimal control problem. Furthermore, we introduce an adaptive algorithm to guide the mesh refinement. Finally, a numerical example is given to demonstrate the theoretical results.


2012 ◽  
Vol 2012 ◽  
pp. 1-26 ◽  
Author(s):  
Wanfang Shen ◽  
Hua Su

The mathematical formulation for a quadratic optimal control problem governed by a linear quasiparabolic integrodifferential equation is studied. The control constrains are given in an integral sense:Uad={u∈X;∫ΩUu⩾0,t∈[0,T]}. Then the a posteriori error estimates inL∞(0,T;H1(Ω))-norm andL2(0,T;L2(Ω))-norm for both the state and the control approximation are given.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Lin Lan ◽  
Ri-hui Chen ◽  
Xiao-dong Wang ◽  
Chen-xia Ma ◽  
Hao-nan Fu

AbstractIn this paper, we discuss a priori error estimates for the finite volume element approximation of optimal control problem governed by Stokes equations. Under some reasonable assumptions, we obtain optimal $L^{2}$ L 2 -norm error estimates. The approximate orders for the state, costate, and control variables are $O(h^{2})$ O ( h 2 ) in the sense of $L^{2}$ L 2 -norm. Furthermore, we derive $H^{1}$ H 1 -norm error estimates for the state and costate variables. Finally, we give some conclusions and future works.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Sudipto Chowdhury ◽  
Neela Nataraj ◽  
Devika Shylaja

AbstractConsider the distributed optimal control problem governed by the von Kármán equations defined on a polygonal domain of {\mathbb{R}^{2}} that describe the deflection of very thin plates with box constraints on the control variable. This article discusses a numerical approximation of the problem that employs the Morley nonconforming finite element method (FEM) to discretize the state and adjoint variables. The control is discretized using piecewise constants. A priori error estimates are derived for the state, adjoint and control variables under minimal regularity assumptions on the exact solution. Error estimates in lower-order norms for the state and adjoint variables are derived. The lower-order estimates for the adjoint variable and a post-processing of control leads to an improved error estimate for the control variable. Numerical results confirm the theoretical results obtained.


Sign in / Sign up

Export Citation Format

Share Document