parabolic optimal control
Recently Published Documents


TOTAL DOCUMENTS

142
(FIVE YEARS 34)

H-INDEX

15
(FIVE YEARS 2)

2022 ◽  
Vol 7 (4) ◽  
pp. 5220-5240
Author(s):  
Zuliang Lu ◽  
◽  
Fei Cai ◽  
Ruixiang Xu ◽  
Chunjuan Hou ◽  
...  

<abstract><p>In this paper, we investigate the spectral element approximation for the optimal control problem of parabolic equation, and present a hp spectral element approximation scheme for the parabolic optimal control problem. For improve the accuracy of the algorithm and construct an adaptive finite element approximation. Under the Scott-Zhang type quasi-interpolation operator, a $ L^2(H^1)-L^2(L^2) $ posteriori error estimates of the hp spectral element approximated solutions for both the state variables and the control variable are obtained. Adopting two auxiliary equations and stability results, a $ L^2(L^2)-L^2(L^2) $ posteriori error estimates are derived for the hp spectral element approximation of optimal parabolic control problem.</p></abstract>


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ulrich Langer ◽  
Andreas Schafelner

Abstract We present, analyze, and test locally stabilized space-time finite element methods on fully unstructured simplicial space-time meshes for the numerical solution of space-time tracking parabolic optimal control problems with the standard L 2-regularization. We derive a priori discretization error estimates in terms of the local mesh-sizes for shape-regular meshes. The adaptive version is driven by local residual error indicators, or, alternatively, by local error indicators derived from a new functional a posteriori error estimator. The latter provides a guaranteed upper bound of the error, but is more costly than the residual error indicators. We perform numerical tests for benchmark examples having different features. In particular, we consider a discontinuous target in form of a first expanding and then contracting ball in 3d that is fixed in the 4d space-time cylinder.


Sign in / Sign up

Export Citation Format

Share Document