A new kind of Bi-variate $ \lambda $ -Bernstein-Kantorovich type operator with shifted knots and its associated GBS form
<p style='text-indent:20px;'>In this paper, we introduce a bi-variate case of a new kind of <inline-formula><tex-math id="M1">\begin{document}$ \lambda $\end{document}</tex-math></inline-formula>-Bernstein-Kantorovich type operator with shifted knots defined by Rahman et al. [<xref ref-type="bibr" rid="b31">31</xref>]. The rate of convergence of the bi-variate operators is obtained in terms of the complete and partial moduli of continuity. Next, we give an error estimate in the approximation of a function in the Lipschitz class and establish a Voronovskaja type theorem. Also, we define the associated GBS(Generalized Boolean Sum) operators and study the degree of approximation of Bögel continuous and Bögel differentiable functions by these operators with the aid of the mixed modulus of smoothness. Finally, we show the rate of convergence of the bi-variate operators and their GBS case for certain functions by illustrative graphics and tables using MATLAB algorithms.</p>