scholarly journals Factors Influencing the Post-Release Movements of Translocated Fishers: Implications for Translocation Success

Author(s):  
Jeffrey Lewis ◽  
Patricia J. Happe ◽  
Kurt J. Jenkins ◽  
David J. Manson

Long distance, post-release movements of translocated wildlife can be a key factor limiting translocation success.  Yet, for many species, we have little or no understanding of factors that influence post-release movements.  Translocations have been important for recovering fisher Pekania pennanti populations across the southern portion of their North American range.  However, little is known about the post-release movements of translocated fishers and how these movements may be influenced by demographic or translocation-process factors.  To restore fishers in Washington State, we moved 90 fishers from central British Columbia and released them at nine sites in the Olympic Fisher Recovery Area on the Olympic Peninsula of Washington from 2008 to 2010. We evaluated post-release movements of 48 fishers to determine both the distance and duration of movements prior to home range establishment.  Fishers moved extensively following their release.  Multi-model selection indicated a high level of support for the hypothesis that post-release movements differed by fisher sex and age; whereas, year of release had no apparent effect on movements, and release date had only a marginal influence on male movements.  Mean distance (± 95% CI) from a release site to a home range was greater for adult males (62.0 ± 19.6 km) than for juvenile males (31.4 ± 16.0 km), adult females (30.9 ± 21.1 km), and juvenile females (29.0 ± 13.5 km).  Mean number of days from release until home range establishment was similar for the sexes, however the variance in movement duration was greater for females.  Twenty-six of 27 females established home ranges over an 11-month period (December-October), while 19 of 21 males did so within a 4-month period (April-July).  Mean home range sizes differed between males (128.3 ± 21.1 km2) and females (63.5 ± 9.0 km2) and were among the largest reported for the species.  A greater proportion of females (18 of 27; 67%) than males (8 of 21; 38%) established home ranges within or partially within the recovery area.  Six females left a previously established home range during the breeding season, presumably to find breeding males.  Given the large distances that fishers can move following release, translocation success could be furthered by releasing individuals at fewer sites in the interior of large reintroduction areas to facilitate greater exposure to a recovery area and greater opportunity to interact with conspecifics and potential mates.

2004 ◽  
Vol 118 (2) ◽  
pp. 239 ◽  
Author(s):  
Robert J. Gau ◽  
Philip D. McLoughlin ◽  
Ray Case ◽  
H. Dean Cluff ◽  
Robert Mulders ◽  
...  

Between May 1995 and June 1999, we equipped eight subadult male (3-5 yrs old) Grizzly Bears (Ursus arctos) with satellite radio-collars within a study area of 235,000 km2, centred 400 km northeast of Yellowknife, Northwest Territories, Canada. Subadult male annual home ranges were extraordinarily large (average = 11,407 km2, SE = 3849) due, in part, to their movement's occasional linear directionality. We believe their long-range linear movements may reflect some individuals tracking the migration of Caribou (Rangifer tarandus). Seasonal daily movement patterns were similar to adult males that were previously reported. The areas used by these bears are the largest ranges reported for any Grizzly Bears and the scale of their movements may put individual bears in contact with humans even when developments are hundreds of kilometres from the central home range of an animal.


2013 ◽  
Vol 40 (4) ◽  
pp. 328 ◽  
Author(s):  
David M. Kalb ◽  
Jacob L. Bowman ◽  
T. Brian Eyler

Content An unknown number (n = four or five) and sex of sika deer (Cervus nippon yakushimae) were introduced to the Delmarva Peninsula, Maryland, in 1916. Since introduction, their population has grown exponentially. Aims The purpose of our study was to investigate dispersal and home-range size to enable better management of this exotic species in the presence of native white-tailed deer (Odocoileus virginianus). Methods We collected telemetry locations on 60 males (captured during their first winter) from 2008 to 2010. Animals were classified into three movement groups, including local, migratory and nomadic post-dispersal. Key results Average home-range sizes ranged from 464 to 4121 ha and were influenced by season and deer movement grouping (P = 0.0001). Of 20 deer that dispersed, 19 did so at 1 year of age. Dispersal distance and direction were random across the landscape (P = 0.899). Local deer were the most common movement group (70%; 42 of 60) and were characterised by short movements confined to a well established home range. We observed 14 deer migrations, characterised by round-trip movements associated with seasons and directionality (P = 0.003). Four deer were classified as nomadic and had long-distance movements across the landscape unassociated with seasons. Conclusions To aid managers in controlling the expansion of the population, we provide data regarding the manner, distance and direction that sika deer move. Our results show that sika deer have variable movement strategies and large home ranges. Implications Variation in movement types will influence spread of the population, confounding species interactions, management and harvest strategies. The present results may have implications to other areas that also have sika populations.


1992 ◽  
Vol 19 (6) ◽  
pp. 707 ◽  
Author(s):  
NPE Langham

The activity patterns of a resident population of 15 feral cats (Felis catus L.) on New Zealand farmland were investigated from March 1984 until February 1987 by radiotelemetry. Females could be divided into two separate groups: (1) those denning in barns and (2) those denning in the swamp and willows. Females denning in barns were mainly nocturnal except in spring and summer when rearing kittens. Barn cats moved significantly further between dusk and dawn, except in autumn-winter, than those denning in swamp and willows which were active over 24 h. When not breeding, related females occupied the same barn. In both groups, the home range of female relatives overlapped. Males ranged over all habitats, and dominant adult males moved significantly further and had larger home ranges than other males in all seasons, except in summer when they rested, avoiding hot summer days. Only adult males were active during the day in spring and autumn-winter. The importance of a Zeitgeber in synchronising cat activity with that of the prey is examined. The significance of female den site is discussed in relation to proximity of food, predators, social behaviour and male defence.


2001 ◽  
Vol 79 (5) ◽  
pp. 838-844 ◽  
Author(s):  
Bruce N McLellan ◽  
Frederick W Hovey

We studied natal dispersal of grizzly bears (Ursus arctos), a solitary nonterritorial carnivore with a promiscuous mating system, between 1979 and 1998. Dispersal distances for 2-year-olds did not differ between males and females, but by 3 years of age, males had dispersed farther than females, and farther still by 4 years of age. Dispersal of both sexes was a gradual process, occurring over 1–4 years. From the locations of death, or last annual ranges, it was estimated that 18 males dispersed 29.9 ± 3.5 km (mean ± SE) and 12 females dispersed 9.8 ± 1.6 km. Eleven of these males dispersed the equivalent of at least the diameter of 1 adult male home range, whereas only 3 of the females dispersed at least the diameter of 1 adult female home range. The longest dispersals recorded were 67 km for a male and 20 km for a female. Because the social system consists of numerous overlapping home ranges of both sexes, long dispersal distances may not be required to avoid inbreeding or competition with relatives. Simple models suggest that 61% of the ranges of brother and sister pairs would not overlap, but the home range of every daughter would overlap her father's range. The home range of an estimated 19 ± 4 (mean ± SD) adult males, however, would overlap at least a portion of each female's range, thereby reducing the chance of a female mating with her brother or father. Understanding the dispersal behaviour of grizzly bears is essential for developing conservation strategies. Our results suggest that meta-population reserve designs must provide corridors wide enough for male grizzly bears to live in with little risk of being killed.


2000 ◽  
Vol 78 (12) ◽  
pp. 2087-2095 ◽  
Author(s):  
Michael J Chamberlain ◽  
Charles D Lovell ◽  
Bruce D Leopold

Recently, coyotes (Canis latrans) have expanded their range to include most areas of the southeastern United States. However, most research on coyotes has been conducted in western and northern regions of North America. We radio-monitored 38 adult coyotes from 1993 to 1997 in central Mississippi. Home-range sizes (P = 0.681) and core-area (area of concentrated use) sizes (P = 0.736) were similar across seasons, but females maintained larger home ranges (P = 0.006) and core areas (P < 0.001) than males. Male-male, female-female, and male-female home-range overlap was greatest during whelping and pup rearing. Except for mated pairs, core-area overlap was negligible across all seasons for adults maintaining neighboring home ranges. Coyote habitat selection varied across spatial scales, though selection was similar between males and females at all scales. Coyote movement rates differed (P < 0.001) temporally, being highest during nocturnal periods. Overall, the highest movement rates for the monitored population were observed for females during summer. Two males and 2 females were suspected of forming pair bonds and frequently traveled together within shared home ranges, as did 2 adult males. Our data indicate that interactions among individual adults are influenced by sex, as most confirmed instances of direct contact occurred between pairs or suspected social groups. In our study area, neighboring adult coyotes exhibited territoriality at the core-area level.


2021 ◽  
Author(s):  
◽  
Rachael Abbott

<p>Translocations are increasingly being used for conservation management of threatened species (Sarrazin & Legendre, 2000). Outcomes are influenced by a range of factors including effects of early rearing experience, conspecific familiarity, density of resident conspecifics, and habitat quality at the release site, all of which may impact on the behaviour of released individuals and subsequent survival and fitness (Law & Linklater, 2007; Linklater & Swaisgood, 2008; Sarrazin & Legendre, 2000). Conservation success, defined as the realisation of goals set out at the start of a project, can be improved by detecting factors causing suboptimal outcomes and identifying potential solutions (Buner et al., 2011; Green et al., 2005; Mihoub et al., 2011).  I aimed to expand current knowledge on factors influencing translocation outcomes by investigating the conservation management of the rowi (Apteryx rowi), the rarest species of kiwi. Current rowi conservation practices provide an opportunity to investigate this type of translocation management model. I provide new evidence and knowledge of behavioural mechanisms driving translocation success, include an expansion of current home range cognitive mapping theory relevant to conservation translocations, and present the first study of rowi home range behaviour (defined as the pattern of space use which leads to the emergence of a stable home range). Rowi conservation management involves removing eggs from the wild, hatching chicks in captivity, rearing on a predator free island until they are large enough to no longer be at risk of predation by stoats (Mustela erminae), then translocation back into the single remaining mainland population at Ōkārito forest. Over three years, experimental releases (n=66) were undertaken into both the existing population of rowi at South Ōkārito, and into an adjacent but unoccupied area of their former range at North Ōkārito. After intensive post-release monitoring, the effects of various elements of the translocation process on post-release survival, dispersal, conspecific association, habitat selection and home range behaviour were examined.  An investigation into the effects of season of release, conspecific density, sex, and release group size on survival during the 90 day critical period following release, found release season and release group size are the most likely factors to influence post-release survival, with highest survival in spring, and for large release groups of four or more birds per release site. Habitat quality throughout the Ōkārito forest was estimated using invertebrate biomass as a proxy. A Geographic Information Systems (GIS) layer showing relative estimated invertebrate biomass was created and used to provide values of habitat quality at release locations and within home ranges. An investigation of the influence of habitat quality on post-release dispersal, conspecific association and home range behaviour found maximum dispersal distance was affected by the release site (North or South Ōkārito), and the interaction of release site and the estimated invertebrate biomass at the release location. Mean home ranges (± SE) of translocated rowi (3.35 ± 0.37 km²), were larger and of lower habitat quality than those of wild rowi (1.06 ± 0.09 km²). No effects of release group size on dispersal distance or conspecific association rates post-release were found.  The effects of early rearing experience are proposed as a key factor influencing translocated rowi behaviour. By monitoring the survival, dispersal, conspecific association and home range behaviour resulting from the translocation of rowi reared in a non-natural social situation, I highlight the potential impact of prior social experience and social memory on cognitive mapping and home range establishment. This innovative approach has the potential to be a valuable expansion to current home range cognitive mapping theory, and warrants further study.  Translocation is a vital tool in conservation, and has undoubtedly been instrumental in improving the situation of rowi since the first application to rowi conservation in the 1990s. This study has demonstrated that further improvements in the effectiveness and efficiency of translocations for conservation can be gained through sound scientific analysis of factors affecting the mechanisms leading to translocation success. Ongoing monitoring, analysis and reassessment of translocation management practices are recommended to ensure optimal conservation outcomes.</p>


The Auk ◽  
2007 ◽  
Vol 124 (4) ◽  
pp. 1407-1424 ◽  
Author(s):  
Darroch M. Whitaker ◽  
Dean F. Stauffer ◽  
Gary W. Norman ◽  
Patrick K. Devers ◽  
John Edwards ◽  
...  

Abstract From 1996 to 2001, researchers at 10 Appalachian study sites collected radiotracking data sufficient to delineate 1,054 seasonal home ranges of Ruffed Grouse (Bonasa umbellus; hereafter “grouse”). Using information-theoretic model selection and paired comparison of home ranges from individual grouse, we evaluated individual, local, and landscape factors hypothesized to affect grouse home-range size. Females and juvenile males occupied home ranges that averaged >2× larger than those of adult males, and home ranges of females averaged 2.6× larger during successful breeding seasons than during years of reproductive failure. Clearcuts and forest roads are considered high-quality covers, and both were more prevalent in smaller home ranges. Several factors operating at a regional and landscape scale were also important. Previous studies have reported that southern grouse use relatively large home ranges, and we observed a continuous decline in home-range size with increasing latitude across the 710-km range spanned by our study sites. Home-range size of males, particularly juvenile males, was positively related to an index of population density. Given the species' “dispersed lekking” mating system, we interpret this as evidence of competition for preferred display sites. As has been reported for other game birds, all sex and age classes of grouse used smaller home ranges following closure of sites to hunting. Grouse inhabiting oak-hickory forests used larger home ranges than conspecifics in mixed mesophytic forests, and other factors interacted with forest type. In oak-hickory forests, female home-range size was inversely related to use of mesic bottomlands, which support important forage plants, and home ranges of adult grouse increased 2.5× following poor hard-mast crops. By contrast, home ranges of grouse inhabiting mixed mesophytic forests were unrelated to use of bottomlands, and the influence of hard mast was reduced. This is in line with the view that in Appalachian oak-hickory forests, grouse are under strong nutritional constraint. However, this constraint is reduced in mixed mesophytic forests, likely because of the presence of high-quality alternative foods (e.g., cherry [Prunus spp.] and birch [Betula spp.]). Facteurs associés à une variation de la taille du domaine vital de Bonasa umbellus dans les Appalaches


1997 ◽  
Vol 24 (3) ◽  
pp. 295 ◽  
Author(s):  
S. D. Anstee ◽  
J. D. Roberts ◽  
J. E. O'Shea

Mounds of the western pebble-mound mouse, Pseudomys chapmani, are found throughout the species’ Pilbara range in areas with iron-ore deposits of economic significance. Translocation techniques are being examined as a means of minimising the impact of mining on this species. In the absence of detailed information on the biology of Pseudomys chapmani, translocation is inadvisable. To provide such basic information, animal densities, mound demographics and population sizes, and home-range and core-area sizes were obtained by a combination of trapping and radio-tracking. Mounds of Pseudomys chapmani were found to be inhabited by social groups of up to 12 animals. Estimates of home-range size gave mean ( s.e.) values of 14·4 6·7 ha and 4·6 2·7 ha for males and females, respectively; core areas were recorded at 0·93 0·29 ha for males and 0·29 0·16 ha for females. Considerable overlap of home ranges was recorded between individuals from the same and different mounds. Overlap at the core-area level occurred only between individuals from the same mound. The high level of social complexity and mound fidelity indicates that translocations should be directed at the level of the social group rather than at the level of the individual.


1995 ◽  
Vol 22 (3) ◽  
pp. 299 ◽  
Author(s):  
V Mirmovitch

Feral cats were studied for 10 months in a residential area in Jerusalem and their spatial distribution compared during two 1-month periods, the first in the autumn prior to the mating season and the second during the mating season (winter). Cat locations were recorded by direct observations, and home-range sizes were calculated with the minimum convex polygon method. No significant change in home-range size of adult males or females was found between the 2 periods. Young males expanded their home ranges considerably during their first mating season. Home ranges of males were significantly larger than those of females in both periods (0.56 and 0.30 ha, respectively, in autumn; 0.75 and 0.27 ha in winter). The home ranges of both sexes overlapped considerably with individuals of the same sex. Overlap among home ranges of females indicated a group pattern. High overlap (80%) was found among females that fed from the same set of garbage bins with similar frequency. Lower overlap (20%) was found between individual females that shared only a subset of their food resources and used it with different frequency. It is suggested that the distribution of food patches (garbage bins), the amount of food available and the rate of food renewal determined the cats' spatial organisation.


1999 ◽  
Vol 59 (1) ◽  
pp. 125-130 ◽  
Author(s):  
C. F. D. ROCHA

The home range of the Tropidurid lizard Liolaemus lutzae, an endemic species of the costal sand dune habitats of Rio de Janeiro State, was studied in the beach habitat of Barra de Maricá restinga, Maricá County. Home ranges were studied using a mark-recapture technique in a delimited area at the beach habitat. I considered for estimates and analysis the home ranges of those lizards with a minimum of four positions. The size of L. lutzae home ranges varied according to the segment of the population. The mean home range size of adult males (x = 59.8 ± 33.7 m²) was significantly larger than that of adult females (x = 22.3 ± 16.1 m²). Juvenile mean home range size was significantly smaller than that of adult males, but did not differ from that of adult females (t = 1.058; p = 0.149). The overlap between male home ranges was usually low (3.6%), being in general only peripheral. Conversely, there was a considerable overlap between home ranges of adult females with those of adult males, the home range areas of two or three females being enclosed in the home range of one adult male. The small overlap between home ranges of adult males suggested mutual exclusion. The observed between-sex differences in the size of L. lutzae home range may be explained by the sexual dimorphism in body size in this species, and by the need of adult males to establish larger areas so as to include many females in their areas, during the reproductive season. The differences in home range along ontogeny probably result from differences in body size of the different segments of the population, due to trophic differences (carnivory and herbivory levels), and the dispersal of young after birth. Because L. lutzae is omnivorous, but primarily herbivorous when adult, and due to its sit-and-wait foraging behavior (mainly on arthropods), it does not need to move around over large areas to find food, which in turn reduces the area necessary for it to live.


Sign in / Sign up

Export Citation Format

Share Document