Classification of Brain MR Images Using Corpus Callosum Shape Measurements

2017 ◽  
pp. 1427-1436
Author(s):  
Gaurav Vivek Bhalerao ◽  
Niranjana Sampathila

The corpus callosum is the largest white matter structure in the brain, which connects the two cerebral hemispheres and facilitates the inter-hemispheric communication. Abnormal anatomy of corpus callosum has been revealed for various brain related diseases. Being an important biomarker, Magnetic Resonance Imaging of the brain followed by corpus callosum segmentation and feature extraction has found to be important for the diagnosis of many neurological diseases. This paper focuses on classification of T1-weighted mid-sagittal MR images of brain for dementia patients. The corpus callosum is segmented using K-means clustering algorithm and corresponding shape based measurements are used as features. Based on these shape based measurements, a back-propagation neural network is trained separately for male and female dataset. The input data consists of 54 female and 31 male patients. This paper reports classification accuracy up to 92% for female patients and 94% for male patients using neural network classifier.

2015 ◽  
Vol 4 (2) ◽  
pp. 48-56 ◽  
Author(s):  
Gaurav Vivek Bhalerao ◽  
Niranjana Sampathila

The corpus callosum is the largest white matter structure in the brain, which connects the two cerebral hemispheres and facilitates the inter-hemispheric communication. Abnormal anatomy of corpus callosum has been revealed for various brain related diseases. Being an important biomarker, Magnetic Resonance Imaging of the brain followed by corpus callosum segmentation and feature extraction has found to be important for the diagnosis of many neurological diseases. This paper focuses on classification of T1-weighted mid-sagittal MR images of brain for dementia patients. The corpus callosum is segmented using K-means clustering algorithm and corresponding shape based measurements are used as features. Based on these shape based measurements, a back-propagation neural network is trained separately for male and female dataset. The input data consists of 54 female and 31 male patients. This paper reports classification accuracy up to 92% for female patients and 94% for male patients using neural network classifier.


2019 ◽  
Author(s):  
Carolina L. S. Cipriano ◽  
Giovanni L. F. Da Silva ◽  
Jonnison L. Ferreira ◽  
Aristófanes C. Silva ◽  
Anselmo Cardoso De Paiva

One of the most severe and common brain tumors is gliomas. Manual classification of injuries of this type is a laborious task in the clinical routine. Therefore, this work proposes an automatic method to classify lesions in the brain in 3D MR images based on superpixels, PSO algorithm and convolutional neural network. The proposed method obtained results for the complete, central and active regions, an accuracy of 87.88%, 70.51%, 80.08% and precision of 76%, 84%, 75% for the respective regions. The results demonstrate the difficulty of the network in the classification of the regions found in the lesions.


2012 ◽  
Vol 263-266 ◽  
pp. 2173-2178
Author(s):  
Xin Guang Li ◽  
Min Feng Yao ◽  
Li Rui Jian ◽  
Zhen Jiang Li

A probabilistic neural network (PNN) speech recognition model based on the partition clustering algorithm is proposed in this paper. The most important advantage of PNN is that training is easy and instantaneous. Therefore, PNN is capable of dealing with real time speech recognition. Besides, in order to increase the performance of PNN, the selection of data set is one of the most important issues. In this paper, using the partition clustering algorithm to select data is proposed. The proposed model is tested on two data sets from the field of spoken Arabic numbers, with promising results. The performance of the proposed model is compared to single back propagation neural network and integrated back propagation neural network. The final comparison result shows that the proposed model performs better than the other two neural networks, and has an accuracy rate of 92.41%.


2016 ◽  
Vol 7 (1) ◽  
pp. 33-49 ◽  
Author(s):  
Suruchi Chawla

In this paper novel method is proposed using hybrid of Genetic Algorithm (GA) and Back Propagation (BP) Artificial Neural Network (ANN) for learning of classification of user queries to cluster for effective Personalized Web Search. The GA- BP ANN has been trained offline for classification of input queries and user query session profiles to a specific cluster based on clustered web query sessions. Thus during online web search, trained GA –BP ANN is used for classification of new user queries to a cluster and the selected cluster is used for web page recommendations. This process of classification and recommendations continues till search is effectively personalized to the information need of the user. Experiment was conducted on the data set of web user query sessions to evaluate the effectiveness of Personalized Web Search using GA optimized BP ANN and the results confirm the improvement in the precision of search results.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Hong Zhu ◽  
Qianhao Fang ◽  
Hanzhi He ◽  
Junfeng Hu ◽  
Daihong Jiang ◽  
...  

Meningioma is the second most commonly encountered tumor type in the brain. There are three grades of meningioma by the standards of the World Health Organization. Preoperative grade prediction of meningioma is extraordinarily important for clinical treatment planning and prognosis evaluation. In this paper, we present a new deep learning model for assisting automatic prediction of meningioma grades to reduce the recurrence of meningioma. Our model is based on an improved LeNet-5 model of convolutional neural network (CNN) and does not require the extraction of the diseased tissue, which can greatly enhance the efficiency. To address the issue of insufficient and unbalanced clinical data of meningioma images, we use an oversampling technique which allows us to considerably improve the accuracy of classification. Experiments on large clinical datasets show that our model can achieve quite high accuracy (i.e., as high as 83.33%) for the classification of meningioma images.


Author(s):  
Maoan Wei ◽  
Shijiu Jin ◽  
Likun Wang ◽  
Yan Zhou

It is very difficult to generalize the relationship between MFL signal and the defect geometric parameters of the pipeline because the relationship is nonlinear. Many applications of wavelet neural network on this field show that the defect geometric parameters can be obtained with this method to some extent. However, the initial centers have great influence on performance of the network. Hierarchical clustering algorithm is proposed in this paper and applied to classification of defect samples, centers selection and calculation of basis function width. With this algorithm, clusters similarity is computed to create tree structure and the perfect clustering is obtained. The sample set created from finite element defect simulation are used to train and validate the efficiency and reliability of the network based on hierarchical clustering algorithm. The experiment shows that the training speed and the prediction precision of the network can be improved simulataneously.


2010 ◽  
Vol 61 (4) ◽  
pp. 235-240 ◽  
Author(s):  
Perumal Chandrasekar ◽  
Vijayarajan Kamaraj

Detection and Classification of Power Quality Disturbancewaveform Using MRA Based Modified Wavelet Transfrom and Neural Networks In this paper, the modified wavelet based artificial neural network (ANN) is implemented and tested for power signal disturbances. The power signal is decomposed by using modified wavelet transform and the classification is carried by using ANN. Discrete modified wavelet transforms based signal decomposition technique is integrated with the back propagation artificial neural network model is proposed. Varieties of power quality events including voltage sag, swell, momentary interruption, harmonics, transient oscillation and voltage fluctuation are used to test the performance of the proposed approach. The simulation is carried out by using MATLAB software. The simulation results show that the proposed scheme offers superior detection and classification compared to the conventional approaches.


2013 ◽  
Vol 441 ◽  
pp. 738-741 ◽  
Author(s):  
Shuo Ding ◽  
Xiao Heng Chang ◽  
Qing Hui Wu

The network model of probabilistic neural network and its method of pattern classification and discrimination are first introduced in this paper. Then probabilistic neural network and three usually used back propagation neural networks are established through MATLAB7.0. The pattern classification of dots on a two-dimensional plane is taken as an example. Probabilistic neural network and improved back propagation neural networks are used to classify these dots respectively. Their classification results are compared with each other. The simulation results show that compared with back propagation neural networks, probabilistic neural network has simpler learning rules, faster training speed and it needs fewer training samples; the pattern classification method based on probabilistic neural network is very effective, and it is superior to the one based on back propagation neural networks in classifying speed, accuracy as well as generalization ability.


Sign in / Sign up

Export Citation Format

Share Document