Optimized Crossover JumpX in Genetic Algorithm for General Routing Problems

Author(s):  
Hicham El Hassani ◽  
Said Benkachcha ◽  
Jamal Benhra

Inspired by nature, genetic algorithms (GA) are among the greatest meta-heuristics optimization methods that have proved their effectiveness to conventional NP-hard problems, especially the traveling salesman problem (TSP) which is one of the most studied Supply chain management problems. This paper proposes a new crossover operator called Jump Crossover (JMPX) for solving the travelling salesmen problem using a genetic algorithm (GA) for near-optimal solutions, to conclude on its efficiency compared to solutions quality given by other conventional operators to the same problem, namely, Partially matched crossover (PMX), Edge recombination Crossover (ERX) and r-opt heuristic with consideration of computational overload. We adopt the path representation technique for our chromosome which is the most direct representation and a low mutation rate to isolate the search space exploration ability of each crossover. The experimental results show that in most cases JMPX can remarkably improve the solution quality of the GA compared to the two existing classic crossover approaches and the r-opt heuristic.

2016 ◽  
pp. 1739-1752 ◽  
Author(s):  
Hicham El Hassani ◽  
Said Benkachcha ◽  
Jamal Benhra

Inspired by nature, genetic algorithms (GA) are among the greatest meta-heuristics optimization methods that have proved their effectiveness to conventional NP-hard problems, especially the traveling salesman problem (TSP) which is one of the most studied supply chain management problems. This paper proposes a new crossover operator called Jump Crossover (JMPX) for solving the travelling salesmen problem using a genetic algorithm (GA) for near-optimal solutions, to conclude on its efficiency compared to solutions quality given by other conventional operators to the same problem, namely, Partially matched crossover (PMX), Edge recombination Crossover (ERX) and r-opt heuristic with consideration of computational overload. The authors adopt a low mutation rate to isolate the search space exploration ability of each crossover. The experimental results show that in most cases JMPX can remarkably improve the solution quality of the GA compared to the two existing classic crossover approaches and the r-opt heuristic.


2015 ◽  
Vol 6 (2) ◽  
pp. 33-44 ◽  
Author(s):  
Hicham El Hassani ◽  
Said Benkachcha ◽  
Jamal Benhra

Inspired by nature, genetic algorithms (GA) are among the greatest meta-heuristics optimization methods that have proved their effectiveness to conventional NP-hard problems, especially the traveling salesman problem (TSP) which is one of the most studied supply chain management problems. This paper proposes a new crossover operator called Jump Crossover (JMPX) for solving the travelling salesmen problem using a genetic algorithm (GA) for near-optimal solutions, to conclude on its efficiency compared to solutions quality given by other conventional operators to the same problem, namely, Partially matched crossover (PMX), Edge recombination Crossover (ERX) and r-opt heuristic with consideration of computational overload. The authors adopt a low mutation rate to isolate the search space exploration ability of each crossover. The experimental results show that in most cases JMPX can remarkably improve the solution quality of the GA compared to the two existing classic crossover approaches and the r-opt heuristic.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Abid Hussain ◽  
Yousaf Shad Muhammad ◽  
M. Nauman Sajid ◽  
Ijaz Hussain ◽  
Alaa Mohamd Shoukry ◽  
...  

Genetic algorithms are evolutionary techniques used for optimization purposes according to survival of the fittest idea. These methods do not ensure optimal solutions; however, they give good approximation usually in time. The genetic algorithms are useful for NP-hard problems, especially the traveling salesman problem. The genetic algorithm depends on selection criteria, crossover, and mutation operators. To tackle the traveling salesman problem using genetic algorithms, there are various representations such as binary, path, adjacency, ordinal, and matrix representations. In this article, we propose a new crossover operator for traveling salesman problem to minimize the total distance. This approach has been linked with path representation, which is the most natural way to represent a legal tour. Computational results are also reported with some traditional path representation methods like partially mapped and order crossovers along with new cycle crossover operator for some benchmark TSPLIB instances and found improvements.


Kybernetes ◽  
2016 ◽  
Vol 45 (1) ◽  
pp. 107-125 ◽  
Author(s):  
Dony Hidayat Al-Janan ◽  
Tung-Kuan Liu

Purpose – In this study, the hybrid Taguchi genetic algorithm (HTGA) was used to optimize the computer numerical control-printed circuit boards drilling path. The optimization was performed by searching for the shortest route for the drilling path. The number of feasible solutions is exponentially related to the number of hole positions. The paper aims to discuss these issues. Design/methodology/approach – Therefore, a traveling cutting tool problem (TCP), which is similar to the traveling salesman problem, was used to evaluate the drilling path; this evaluation is considered an NP-hard problem. In this paper, an improved genetic algorithm embedded in the Taguchi method and a neighbor search method are proposed for improving the solution quality. The classical TCP problems proposed by Lim et al. (2014) were used for validating the performance of the proposed algorithm. Findings – Results showed that the proposed algorithm outperforms a previous study in robustness and convergence speed. Originality/value – The HTGA has not been used for optimizing the drilling path. This study shows that the HTGA can be applied to complex problems.


2011 ◽  
Vol 421 ◽  
pp. 559-563
Author(s):  
Yong Chao Gao ◽  
Li Mei Liu ◽  
Heng Qian ◽  
Ding Wang

The scale and complexity of search space are important factors deciding the solving difficulty of an optimization problem. The information of solution space may lead searching to optimal solutions. Based on this, an algorithm for combinatorial optimization is proposed. This algorithm makes use of the good solutions found by intelligent algorithms, contracts the search space and partitions it into one or several optimal regions by backbones of combinatorial optimization solutions. And optimization of small-scale problems is carried out in optimal regions. Statistical analysis is not necessary before or through the solving process in this algorithm, and solution information is used to estimate the landscape of search space, which enhances the speed of solving and solution quality. The algorithm breaks a new path for solving combinatorial optimization problems, and the results of experiments also testify its efficiency.


Author(s):  
Tommy Hult ◽  
Abbas Mohammed

Efficient use of the available licensed radio spectrum is becoming increasingly difficult as the demand and usage of the radio spectrum increases. This usage of the spectrum is not uniform within the licensed band but concentrated in certain frequencies of the spectrum while other parts of the spectrum are inefficiently utilized. In cognitive radio environments, the primary users are allocated licensed frequency bands while secondary cognitive users dynamically allocate the empty frequencies within the licensed frequency band according to their requested QoS (Quality of Service) specifications. This dynamic decision-making is a multi-criteria optimization problem, which the authors propose to solve using a genetic algorithm. Genetic algorithms traverse the optimization search space using a multitude of parallel solutions and choosing the solution that has the best overall fit to the criteria. Due to this parallelism, the genetic algorithm is less likely than traditional algorithms to get caught at a local optimal point.


2019 ◽  
Vol 62 (7) ◽  
pp. 2613-2651
Author(s):  
Grigorios Loukides ◽  
George Theodorakopoulos

AbstractA location histogram is comprised of the number of times a user has visited locations as they move in an area of interest, and it is often obtained from the user in the context of applications such as recommendation and advertising. However, a location histogram that leaves a user’s computer or device may threaten privacy when it contains visits to locations that the user does not want to disclose (sensitive locations), or when it can be used to profile the user in a way that leads to price discrimination and unsolicited advertising (e.g., as “wealthy” or “minority member”). Our work introduces two privacy notions to protect a location histogram from these threats: Sensitive Location Hiding, which aims at concealing all visits to sensitive locations, and Target Avoidance/Resemblance, which aims at concealing the similarity/dissimilarity of the user’s histogram to a target histogram that corresponds to an undesired/desired profile. We formulate an optimization problem around each notion: Sensitive Location Hiding ($${ SLH}$$SLH), which seeks to construct a histogram that is as similar as possible to the user’s histogram but associates all visits with nonsensitive locations, and Target Avoidance/Resemblance ($${ TA}$$TA/$${ TR}$$TR), which seeks to construct a histogram that is as dissimilar/similar as possible to a given target histogram but remains useful for getting a good response from the application that analyzes the histogram. We develop an optimal algorithm for each notion, which operates on a notion-specific search space graph and finds a shortest or longest path in the graph that corresponds to a solution histogram. In addition, we develop a greedy heuristic for the $${ TA}$$TA/$${ TR}$$TR problem, which operates directly on a user’s histogram. Our experiments demonstrate that all algorithms are effective at preserving the distribution of locations in a histogram and the quality of location recommendation. They also demonstrate that the heuristic produces near-optimal solutions while being orders of magnitude faster than the optimal algorithm for $${ TA}$$TA/$${ TR}$$TR.


2020 ◽  
Vol 54 (2) ◽  
pp. 307-323
Author(s):  
Wen-Chiung Lee ◽  
Jen-Ya Wang

This study introduces a two-machine three-agent scheduling problem. We aim to minimize the total tardiness of jobs from agent 1 subject to that the maximum completion time of jobs from agent 2 cannot exceed a given limit and that two maintenance activities from agent 3 must be conducted within two maintenance windows. Due to the NP-hardness of this problem, a genetic algorithm (named GA+) is proposed to obtain approximate solutions. On the other hand, a branch-and-bound algorithm (named B&B) is developed to generate the optimal solutions. When the problem size is small, we use B&B to verify the solution quality of GA+. When the number of jobs is large, a relative deviation is proposed to show the gap between GA+ and another ordinary genetic algorithm. Experimental results show that the proposed genetic algorithm can generate approximate solutions by consuming reasonable execution time.


Author(s):  
CHENGYING MAO ◽  
XINXIN YU

The quality of test data has an important impact on the effect of software testing, so test data generation has always been a key task for finding the potential faults in program code. In structural testing, the primary goal is to cover some kinds of structure elements with some specific inputs. Search-based test data generation provides a rational way to handle this difficult problem. In the past, some well-known meta-heuristic search algorithms have been successfully utilized to solve this issue. In this paper, we introduce a variant of genetic algorithm (GA), called quantum-inspired genetic algorithm (QIGA), to generate the test data with stronger coverage ability. In this new algorithm, the traditional binary bit is replaced by a quantum bit (Q-bit) to enlarge the search space so as to avoid falling into local optimal solution. On the other hand, some other strategies such as quantum rotation gate and catastrophe operation are also used to improve algorithm efficiency and quality of test data. In addition, experimental analysis on eight real-world programs is performed to validate the effectiveness of our method. The results show that QIGA-based method can generate test data with higher coverage in much smaller convergence generations than GA-based method. More importantly, our proposed method is more robust for algorithm parameter change.


2013 ◽  
Vol 765-767 ◽  
pp. 687-689
Author(s):  
Yi Song ◽  
Ni Ni Wei

The Traveling Salesman Problem is a combinatorial optimization problem, the problem has been shown to belong to the NPC problem, the possible solution of Traveling Salesman Problem and the scale of the cities have the exponential relation, so the more bigger of the scale. In this paper, improve the search process of the genetic algorithm by introducing the idea is to compress the search space. The simulation results show that for solving the TSP, the algorithm can quickly obtain multiple high-quality solutions. It can reduce the blindness of random search and accelerate convergence of the algorithm.


Sign in / Sign up

Export Citation Format

Share Document