Multi-Object Tracking in Wireless Sensor Networks Using Swarm Intelligence

Author(s):  
Rabie A. Ramadan ◽  
Fatma H. Elfouly

Wireless sensor networks (WSNs) may be described as a self-configured wireless networks that can be used to track physical objects or monitor environmental features, such as temperature or motion. The sensed data is then passed across the network to the main location or sink node, where the data can be processed and analyzed. Sensor nodes in WSN are fundamentally resource-constrained: they have restricted processing power, computing, space, and transmission bandwidth. Object tracking is considered as one of the major applications. However, many of the recent articles focused on object localization. In this chapter, the authors suggest an effective approach for tracking objects in WSNs. The aim is to achieve both minimal energy consumption in reporting activity and balanced energy consumption across the WSN lifetime extension of sensor nodes. Furthermore, data reliability is considered in our model. The chapter starts by formulating the multi-object tracking problem using 0/1 Integer Linear programming. In addition, the authors adopted the swarm intelligence technique to solve the optimization problem.

2013 ◽  
Vol 706-708 ◽  
pp. 635-638
Author(s):  
Yong Lv

Wireless Sensor Networks consisting of nodes with limited power are deployed to collect and distribute useful information from the field to the other sensor nodes. Energy consumption is a key issue in the sensor’s communications since many use battery power, which is limited. In this paper, we describe a novel energy efficient routing approach which combines swarm intelligence, especially the ant colony based meta-heuristic, with a novel variation of reinforcement learning for sensor networks (ARNet). The main goal of our study was to maintain network lifetime at a maximum, while discovering the shortest paths from the source nodes to the sink node using an improved swarm intelligence. ARNet balances the energy consumption of nodes in the network and extends the network lifetime. Simulation results show that compared with the traditional EEABR algorithm can obviously improve adaptability and reduce the average energy consumption effectively.


Author(s):  
Bilal Muhammad Khan ◽  
Rabia Bilal

One of the critical and vital parameter of Wireless Sensor Networks (WSNs) is its lifetime. There are various methods to increase WSN lifetime, clustering technique is one of them. In clustering, selection of desired percentage of Cluster Head (CHs) is performed among the sensor nodes (SNs). Selected CHs are responsible to collect data from its member nodes, aggregates the data and finally send to the sink. In this chapter, Fuzzy-TOPSIS techniques based on multi criteria decision making to choose CH efficiently and effectively to maximize the WSN lifetime are presented. These five criteria includes; residual energy, node energy consumption rate, number of neighbor nodes, average distance between neighboring nodes and distance from sink. Threshold based intra-cluster and inter-cluster multi-hop communication mechanism is used to decrease energy consumption. Moreover impact of node density and different type mobility strategies are presented in order to investigate impact over WSN lifetime.


2020 ◽  
pp. 596-627
Author(s):  
Bilal Muhammad Khan ◽  
Rabia Bilal

One of the critical and vital parameter of Wireless Sensor Networks (WSNs) is its lifetime. There are various methods to increase WSN lifetime, clustering technique is one of them. In clustering, selection of desired percentage of Cluster Head (CHs) is performed among the sensor nodes (SNs). Selected CHs are responsible to collect data from its member nodes, aggregates the data and finally send to the sink. In this chapter, Fuzzy-TOPSIS techniques based on multi criteria decision making to choose CH efficiently and effectively to maximize the WSN lifetime are presented. These five criteria includes; residual energy, node energy consumption rate, number of neighbor nodes, average distance between neighboring nodes and distance from sink. Threshold based intra-cluster and inter-cluster multi-hop communication mechanism is used to decrease energy consumption. Moreover impact of node density and different type mobility strategies are presented in order to investigate impact over WSN lifetime.


Author(s):  
A. Radhika ◽  
D. Haritha

Wireless Sensor Networks, have witnessed significant amount of improvement in research across various areas like Routing, Security, Localization, Deployment and above all Energy Efficiency. Congestion is a problem of  importance in resource constrained Wireless Sensor Networks, especially for large networks, where the traffic loads exceed the available capacity of the resources . Sensor nodes are prone to failure and the misbehaviour of these faulty nodes creates further congestion. The resulting effect is a degradation in network performance, additional computation and increased energy consumption, which in turn decreases network lifetime. Hence, the data packet routing algorithm should consider congestion as one of the parameters, in addition to the role of the faulty nodes and not merely energy efficient protocols .Nowadays, the main central point of attraction is the concept of Swarm Intelligence based techniques integration in WSN.  Swarm Intelligence based Computational Swarm Intelligence Techniques have improvised WSN in terms of efficiency, Performance, robustness and scalability. The main objective of this research paper is to propose congestion aware , energy efficient, routing approach that utilizes Ant Colony Optimization, in which faulty nodes are isolated by means of the concept of trust further we compare the performance of various existing routing protocols like AODV, DSDV and DSR routing protocols, ACO Based Routing Protocol  with Trust Based Congestion aware ACO Based Routing in terms of End to End Delay, Packet Delivery Rate, Routing Overhead, Throughput and Energy Efficiency. Simulation based results and data analysis shows that overall TBC-ACO is 150% more efficient in terms of overall performance as compared to other existing routing protocols for Wireless Sensor Networks.


Author(s):  
Chinedu Duru ◽  
Neco Ventura ◽  
Mqhele Dlodlo

Background: Wireless Sensor Networks (WSNs) have been researched to be one of the ground-breaking technologies for the remote monitoring of pipeline infrastructure of the Oil and Gas industry. Research have also shown that the preferred deployment approach of the sensor network on pipeline structures follows a linear array of nodes, placed a distance apart from each other across the infrastructure length. The linear array topology of the sensor nodes gives rise to the name Linear Wireless Sensor Networks (LWSNs) which over the years have seen themselves being applied to pipelines for effective remote monitoring and surveillance. This paper aims to investigate the energy consumption issue associated with LWSNs deployed in cluster-based fashion along a pipeline infrastructure. Methods: Through quantitative analysis, the study attempts to approach the investigation conceptually focusing on mathematical analysis of proposed models to bring about conjectures on energy consumption performance. Results: From the derived analysis, results have shown that energy consumption is diminished to a minimum if there is a sink for every placed sensor node in the LWSN. To be precise, the analysis conceptually demonstrate that groups containing small number of nodes with a corresponding sink node is the approach to follow when pursuing a cluster-based LWSN for pipeline monitoring applications. Conclusion: From the results, it is discovered that energy consumption of a deployed LWSN can be decreased by creating groups out of the total deployed nodes with a sink servicing each group. In essence, the smaller number of nodes each group contains with a corresponding sink, the less energy consumed in total for the entire LWSN. This therefore means that a sink for every individual node will attribute to minimum energy consumption for every non-sink node. From the study, it can be concurred that energy consumption of a LWSN is inversely proportional to the number of sinks deployed and hence the number of groups created.


Author(s):  
Rekha Goyat ◽  
Mritunjay Kumar Rai ◽  
Gulshan Kumar ◽  
Hye-Jin Kim ◽  
Se-Jung Lim

Background: Wireless Sensor Networks (WSNs) is considered one of the key research area in the recent. Various applications of WSNs need geographic location of the sensor nodes. Objective: Localization in WSNs plays an important role because without knowledge of sensor nodes location the information is useless. Finding the accurate location is very crucial in Wireless Sensor Networks. The efficiency of any localization approach is decided on the basis of accuracy and localization error. In range-free localization approaches, the location of unknown nodes are computed by collecting the information such as minimum hop count, hop size information from neighbors nodes. Methods: Although various studied have been done for computing the location of nodes but still, it is an enduring research area. To mitigate the problems of existing algorithms, a range-free Improved Weighted Novel DV-Hop localization algorithm is proposed. Main motive of the proposed study is to reduced localization error with least energy consumption. Firstly, the location information of anchor nodes is broadcasted upto M hop to decrease the energy consumption. Further, a weight factor and correction factor are introduced which refine the hop size of anchor nodes. Results: The refined hop size is further utilized for localization to reduces localization error significantly. The simulation results of the proposed algorithm are compared with other existing algorithms for evaluating the effectiveness and the performance. The simulated results are evaluated in terms localization error and computational cost by considering different parameters such as node density, percentage of anchor nodes, transmission range, effect of sensing field and effect of M on localization error. Further statistical analysis is performed on simulated results to prove the validation of proposed algorithm. A paired T-test is applied on localization error and localization time. The results of T-test depicts that the proposed algorithm significantly improves the localization accuracy with least energy consumption as compared to other existing algorithms like DV-Hop, IWCDV-Hop, and IDV-Hop. Conclusion: From the simulated results, it is concluded that the proposed algorithm offers 36% accurate localization than traditional DV-Hop and 21 % than IDV-Hop and 13% than IWCDV-Hop.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Mingxin Yang ◽  
Jingsha He ◽  
Yuqiang Zhang

Due to limited resources in wireless sensor nodes, energy efficiency is considered as one of the primary constraints in the design of the topology of wireless sensor networks (WSNs). Since data that are collected by wireless sensor nodes exhibit the characteristics of temporal association, data fusion has also become a very important means of reducing network traffic as well as eliminating data redundancy as far as data transmission is concerned. Another reason for data fusion is that, in many applications, only some of the data that are collected can meet the requirements of the sink node. In this paper, we propose a method to calculate the number of cluster heads or data aggregators during data fusion based on the rate-distortion function. In our discussion, we will first establish an energy consumption model and then describe a method for calculating the number of cluster heads from the point of view of reducing energy consumption. We will also show through theoretical analysis and experimentation that the network topology design based on the rate-distortion function is indeed more energy-efficient.


Wireless Sensor Networks (WSN) consists of a large amount of nodes connected in a self-directed manner. The most important problems in WSN are Energy, Routing, Security, etc., price of the sensor nodes and renovation of these networks is reasonable. The sensor node tools included a radio transceiver with an antenna and an energy source, usually a battery. WSN compute the environmental conditions such as temperature, sound, pollution levels, etc., WSN built the network with the help of nodes. A sensor community consists of many detection stations known as sensor nodes, every of which is small, light-weight and portable. Nodes are linked separately. Each node is linked into the sensors. In recent years WSN has grow to be an essential function in real world. The data’s are sent from end to end multiple nodes and gateways, the data’s are connected to other networks such as wireless Ethernet. MGEAR is the existing mechanism. It works with the routing and energy consumption. The principal problem of this work is choosing cluster head, and the selection is based on base station, so the manner is consumes energy. In this paper, develop the novel based hybrid protocol Low Energy Aware Gateway (LEAG). We used Zigbee techniques to reduce energy consumption and routing. Gateway is used to minimize the energy consumption and data is send to the base station. Nodes are used to transmit the data into the cluster head, it transmit the data into gateway and gateway compress and aggregate the data then sent to the base station. Simulation result shows our proposed mechanism consumes less energy, increased throughput, packet delivery ration and secure routing when compared to existing mechanism (MGEAR).


2020 ◽  
Author(s):  
Ademola Abidoye ◽  
Boniface Kabaso

Abstract Wireless sensor networks (WSNs) have been recognized as one of the most essential technologies of the 21st century. The applications of WSNs are rapidly increasing in almost every sector because they can be deployed in areas where cable and power supply are difficult to use. In the literature, different methods have been proposed to minimize energy consumption of sensor nodes so as to prolong WSNs utilization. In this article, we propose an efficient routing protocol for data transmission in WSNs; it is called Energy-Efficient Hierarchical routing protocol for wireless sensor networks based on Fog Computing (EEHFC). Fog computing is integrated into the proposed scheme due to its capability to optimize the limited power source of WSNs and its ability to scale up to the requirements of the Internet of Things applications. In addition, we propose an improved ant colony optimization (ACO) algorithm that can be used to construct optimal path for efficient data transmission for sensor nodes. The performance of the proposed scheme is evaluated in comparison with P-SEP, EDCF, and RABACO schemes. The results of the simulations show that the proposed approach can minimize sensor nodes’ energy consumption, data packet losses and extends the network lifetime


Author(s):  
Amarasimha T. ◽  
V. Srinivasa Rao

Wireless sensor networks are used in machine learning for data communication and classification. Sensor nodes in network suffer from low battery power, so it is necessary to reduce energy consumption. One way of decreasing energy utilization is reducing the information transmitted by an advanced machine learning process called support vector machine. Further, nodes in WSN malfunction upon the occurrence of malicious activities. To overcome these issues, energy conserving and faulty node detection WSN is proposed. SVM optimizes data to be transmitted via one-hop transmission. It sends only the extreme points of data instead of transmitting whole information. This will reduce transmitting energy and accumulate excess energy for future purpose. Moreover, malfunction nodes are identified to overcome difficulties on data processing. Since each node transmits data to nearby nodes, the misbehaving nodes are detected based on transmission speed. The experimental results show that proposed algorithm provides better results in terms of reduced energy consumption and faulty node detection.


Sign in / Sign up

Export Citation Format

Share Document