Mushroom Bioactive Compounds

2022 ◽  
pp. 213-235
Author(s):  
Deepali Koreti ◽  
Anjali Kosre ◽  
Ashish Kumar ◽  
Nagendra Kumar Chandrawanshi

Mushrooms are widely utilized as a nutritional and functional food, and they are also appreciated for their medicinal as well as therapeutic applications. Bioactive compounds are isolated from mushrooms possess medicinal properties such as anti-inflammatory, antimicrobial, antitumor, immunomodulatory, and antioxidant. Mushroom bioactive compounds having antibacterial potential and can be used in medical sectors for the cure of several pathogenic disease. Nanoemulsions are one such example of nano-technique that has a very promising application in various fields. The use of nanoemulsion in encapsulation for food-grade ingredients in their compounds such as vitamins, lipids, antioxidants, and antimicrobial agents is a new technique. Bioactive compounds from mushrooms can be a good alternative source for antibacterial nanoemulsions development. This chapter discusses all bioactive compounds and the production and purification of these bioactive compounds. Another hand discusses the nanoemulsion formation by bioactive compounds and nanoemulsion used as antimicrobial agents.

RSC Advances ◽  
2020 ◽  
Vol 10 (72) ◽  
pp. 44522-44532
Author(s):  
Wing-Fu Lai ◽  
Eric Wong ◽  
Wing-Tak Wong

Multilayered composite-coated hydrogel beads are generated from algal alginate as carriers of bioactive compounds. They show high potential for applications in functional food development, nutraceutical delivery, and pharmaceutical formulation.


2018 ◽  
Vol 56 (4A) ◽  
pp. 221
Author(s):  
NGUYEN Tiến Thành

The fungiCordyceps spp. which have been known as Dong Trung Ha Thao and their secondary metabolites cordycepin and adenosine, in recent years, attracted a great effort from many research not only in exploitation of new species but also the artificial cultivation and extraction of bioactive compounds for application in functional food.  Cordyceps militarisis nowadays successful domesticated and cultivated in artificial solid medium including rice, silk -worm, coconut milk and minerals. Apart from main products of fruiting body of fungi, the spent solid medium also is considered as valuable due to the high content of bioactive compound remained. This part is normally used for making liquor after a long incubation with food-grade ethanol. In this study, with the aim to obtain the concentrate of bioactive compounds with less time used, several methods of extraction and concentration were performed with the residual solid medium using ethanol with and without the support of heat and ultrasonic. It was shown that, by using 50% of ethanol, adenosine and cordycepin could effectively thermal – extracted at 65oC for 6h.  By vacuum evaporation, the concentration of two those compounds was increased 10 times with high recovery yield, facilitating for further usage. 


Biology ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 634
Author(s):  
Francisco Les ◽  
Guillermo Cásedas ◽  
Víctor López

Nature is an inexhaustible source of bioactive compounds and products with interesting medicinal properties and technological applications [...]


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1306
Author(s):  
Marcin Dziedziński ◽  
Joanna Kobus-Cisowska ◽  
Barbara Stachowiak

The pine (Pinus L.) is the largest and most heteromorphic plant genus of the pine family (Pinaceae Lindl.), which grows almost exclusively in the northern hemisphere. The demand for plant-based remedies, supplements and functional food is growing worldwide. Although pine-based products are widely available in many parts of the world, they are almost absent as food ingredients. The literature shows the beneficial effects of pine preparations on human health. Despite the wide geographical distribution of pine trees in the natural environment, there are very few data in the literature on the widespread use of pine in food technology. This study aims to present, characterise and evaluate the content of phytochemicals in pine trees, including shoots, bark and conifer needles, as well as to summarise the available data on their health-promoting and functional properties, and the potential of their use in food and the pharmaceutical industry to support health. Various species of pine tree contain different compositions of bioactive compounds. Regardless of the solvent, method, pine species and plant part used, all pine extracts contain a high number of polyphenols. Pine tree extracts exhibit several described biological activities that may be beneficial to human health. The available examples of the application of pine elements in food are promising. The reuse of residual pine elements is still limited compared to its potential. In this case, it is necessary to conduct more research to find and develop new products and applications of pine residues and by-products.


Marine Drugs ◽  
2021 ◽  
Vol 19 (5) ◽  
pp. 246
Author(s):  
Disha Varijakzhan ◽  
Jiun-Yan Loh ◽  
Wai-Sum Yap ◽  
Khatijah Yusoff ◽  
Rabiha Seboussi ◽  
...  

Marine sponges are sessile invertebrates that can be found in temperate, polar and tropical regions. They are known to be major contributors of bioactive compounds, which are discovered in and extracted from the marine environment. The compounds extracted from these sponges are known to exhibit various bioactivities, such as antimicrobial, antitumor and general cytotoxicity. For example, various compounds isolated from Theonella swinhoei have showcased various bioactivities, such as those that are antibacterial, antiviral and antifungal. In this review, we discuss bioactive compounds that have been identified from marine sponges that showcase the ability to act as antibacterial, antiviral, anti-malarial and antifungal agents against human pathogens and fish pathogens in the aquaculture industry. Moreover, the application of such compounds as antimicrobial agents in other veterinary commodities, such as poultry, cattle farming and domesticated cats, is discussed, along with a brief discussion regarding the mode of action of these compounds on the targeted sites in various pathogens. The bioactivity of the compounds discussed in this review is focused mainly on compounds that have been identified between 2000 and 2020 and includes the novel compounds discovered from 2018 to 2021.


2012 ◽  
Vol 78 (13) ◽  
pp. 4654-4658 ◽  
Author(s):  
Claudio Gardana ◽  
Andrea Barbieri ◽  
Paolo Simonetti ◽  
Simone Guglielmetti

ABSTRACTPropolis (bee glue) is a resinous, sticky, dark-colored material produced by honeybees. Propolis today, due to its medicinal properties, is increasingly popular and is extensively used in food, beverages, and cosmetic products. Besides its numerous positive properties, propolis may also have adverse effects, such as, principally, allergic eczematous contact dermatitis in apiarists and in consumers with an allergic predisposition. In this study, we found appropriate conditions for removing caffeate esters, which are the main allergenic components, from raw propolis. The proposed method consists of the resuspension of propolis in a food grade solvent, followed by a biotransformation based on the cinnamoyl esterase activity ofLactobacillus helveticus. We showed that the reduction of caffeate esters byL. helveticusdid not affect the content of flavonoids, which are the main bioactive molecules of propolis. Furthermore, we verified that the biotransformation of propolis did not cause a loss of antimicrobial activity. Finally, we demonstrated that the ability ofL. helveticusto hydrolyze caffeate esters in propolis is strain specific. In conclusion, the proposed strategy is simple, employs food grade materials, and is effective in selectively removing allergenic molecules without affecting the bioactive fraction of propolis. This is the first study demonstrating that the allergenic caffeate esters of propolis can be eliminated by means of a bacterial biotransformation procedure.


Author(s):  
Gautam Shiv Shankar ◽  
M Navneet ◽  
Kumar Sanjay ◽  
M Prabhat

The aim of present study was to evaluate the antibacterial potential of various extracts (petroleum ether, acetone, methanol and aqueous) of Nepeta ciliaris against selected respiratory tract pathogens. The extracts from the aerial parts of N. ciliaris at concentration of 200 mg/ml were screened against three gram-positive (Staphylococcus aureus MTCC 1144, Streptococcus pneumoniae MTCC 655 and Streptococcus pyogenes MTCC 442) and one gram-negative (Pseudomonas aeruginosa MTCC 2474) bacterial pathogens. The agar well diffusion method was adopted to examine antibacterial and minimum inhibitory concentration (MIC) values of most effective extracts against the susceptible bacteria. Erythromycin was used as positive control to determine the sensitivity of the strains. Out of the four bacterial species tested, S. pneumoniae was the most susceptible. The acetone extract exhibited maximum activity against all the tested microorganisms while methanol extract showed activity against P. aeruginosa. The MIC values ranged from 40 to 50 mg/ml for all the organisms. The N. ciliaris is potentially a good source of antimicrobial agents. DOI: http://dx.doi.org/10.3126/kuset.v8i1.6049 KUSET 2012; 8(1): 100-103


2018 ◽  
Vol 49 (1) ◽  
pp. 46-52 ◽  
Author(s):  
M. Božik ◽  
P. Hovorková ◽  
P. Klouček

AbstractEssential oils play a prominent role as flavouring agents and fragrances in the food and perfume industries. Carvacrol is a major component of various essential oils, such as oregano and thyme oils, and is responsible for their antimicrobial activity. Lauric acid is a medium-chain fatty acid (MCFA) with a high antibacterial potential. Both carvacrol and MCFAs have been used empirically as antimicrobial agents. Here, we tested the inhibitory properties of carvacrol and coconut (Cocos nuciferaL.) oil containing a high percentage of MCFAs against 5 harmful bacterial pathogens:Escherichia coli, SalmonellaEnteritidis,Staphylococcus aureus, Listeria monocytogenes, andEnterococcus cecorum. Gas chromatography (GC-FID) analysis of coconut oil showed a high concentration of lauric acid (41%). Microdilution antimicrobial assays showed that the combination of carvacrol and coconut oil had a stronger antibacterial effect against all tested bacteria than both agents separately. We conclude that carvacrol could significantly improve the antibacterial effect of coconut oil.


2017 ◽  
Vol 7 (3) ◽  
pp. 195 ◽  
Author(s):  
Rattanamanee Chomchan ◽  
Sunisa Siripongvutikorn ◽  
Panupong Puttarak ◽  
Rungtip Rattanapon

Background: Young ricegrass (Oryza sativa L.) can be introduced as one of functional food product since sprouts have been much interested in this era due to their high nutritive values. Bio-fortification of selenium is one strategy to enhance plant bioactivity. However, the level of selenium used is varied among species of plants, hence, the proper level needs to be explored.Objective: To investigate the influence of selenium bio-fortification on nutritional compositions, bioactive compounds content and anti-oxidative properties of young ricegrass.Methods: Sodium selenite ranging 0, 10, 20, 30 and 40 mg Se/L has been hydroponically bio-fortified into ricegrass then grown for 8 d and investigated the changes of growth characteristics, selenium content, accumulation of bioactive compounds and anti-oxidative properties.Results:  Results revealed that selenium bio-fortified exogenously increased the accumulation of selenium in ricegrass by 529% at 40 mg Se/L treatment without negatively changes in leaves biomass at the day of harvesting. However, root part weight slightly decreased when increased selenium level. Selenium at concentration of 10 and 20 mg Se/L can stimulate the production of phenolic compounds and antioxidant activities in young ricegrass as measured by DPPH, ABTS, FRAP and chelating assay. Conversely, higher level of selenium fortification reduced the accumulation of phenolics in ricegrass may due to pro-oxidant expression.Conclusion: Selenium bio-fortification can be used as a useful technique to improve quality of ricegrass plantation. 10 mg Se/L treatment was an ideal to trigger the synthesis of phenolics which exhibited high antioxidant activities. While, 40 mg Se/L treatment was ultimate for the production of Se plant foods.Keywords: Antioxidant activities; Bio-fortification; Ricegrass; Selenium


Sign in / Sign up

Export Citation Format

Share Document