GUI-CAD Tool for Segmentation and Classification of Abnormalities in Lung CT Image

Author(s):  
V. Vijaya Kishore ◽  
R.V.S. Satyanarayana

A vital necessity for clinical determination and treatment is an opportunity to prepare a procedure that is universally adaptable. Computer aided diagnosis (CAD) of various medical conditions has seen a tremendous growth in recent years. The frameworks combined with expanding capacity, the coliseum of CAD is touching new spaces. The goal of proposed work is to build an easy to understand multifunctional GUI Device for CAD that performs intelligent preparing of lung CT images. Functions implemented are to achieve region of interest (ROI) segmentation for nodule detection. The nodule extraction from ROI is implemented by morphological operations, reducing the complexity and making the system suitable for real-time applications. In addition, an interactive 3D viewer and performance measure tool that quantifies and measures the nodules is integrated. The results are validated through clinical expert. This serves as a foundation to determine, the decision of treatment and the prospect of recovery.

Author(s):  
Saliha Zahoor ◽  
Ikram Ullah Lali ◽  
Muhammad Attique Khan ◽  
Kashif Javed ◽  
Waqar Mehmood

: Breast Cancer is a common dangerous disease for women. In the world, many women died due to Breast cancer. However, in the initial stage, the diagnosis of breast cancer can save women's life. To diagnose cancer in the breast tissues there are several techniques and methods. The image processing, machine learning and deep learning methods and techniques are presented in this paper to diagnose the breast cancer. This work will be helpful to adopt better choices and reliable methods to diagnose breast cancer in an initial stage to survive the women's life. To detect the breast masses, microcalcifications, malignant cells the different techniques are used in the Computer-Aided Diagnosis (CAD) systems phases like preprocessing, segmentation, feature extraction, and classification. We have been reported a detailed analysis of different techniques or methods with their usage and performance measurement. From the reported results, it is concluded that for the survival of women’s life it is essential to improve the methods or techniques to diagnose breast cancer at an initial stage by improving the results of the Computer-Aided Diagnosis systems. Furthermore, segmentation and classification phases are challenging for researchers for the diagnosis of breast cancer accurately. Therefore, more advanced tools and techniques are still essential for the accurate diagnosis and classification of breast cancer.


Early recognition and classification of pulmonary nodules by the use of computer-aided diagnosis (CAD) tools finds useful to reduce the death rate due to the illness of lung cancer. This paper devises a new CAD tool utilizing a segmentation based classification process for lung CT images. Initially, the input CT images are pre-processed by image enhancement and noise removal process. Then, watershed segmentation model is employed for the segmentation of the pre-processed images. Subsequently, the feature extraction process is carried out using Xecption model and random forest (RF) classifier is used of the identification of lung CT images as normal, benign or malignant. The use of RF model results to effective classification of the applied images. This model undergoes extensive experimentation against a benchmark lung CT image dataset and the results are investigated under several aspects. The obtained outcome pointed out the significant performance of the presented model over the compared methods.


2018 ◽  
Vol 7 (3.12) ◽  
pp. 848
Author(s):  
T Suneetha Rani ◽  
S J Soujanya ◽  
Pole Anjaiah

Recognition of either masses or tissues in a mammogram digital images is a key issue for radiologist. Present methods uses medial filter and morphological operations for detection of suspected cases in a mammogram. They use region of interest (ROI) segmentation for extraction of masses and classification of levels of severities.  Classification of large number of mammogram images based on breast cancer cases takes longer computation time for performing of ROI segmentation.  This is addressed by multi-ROI segmentation and it retrieves the textual properties of large mammogram images for effectively determining the breast cancer mammogram images.Experimental results shows the better performance of proposed method than existing ROI based texture feature extraction.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Eman Magdy ◽  
Nourhan Zayed ◽  
Mahmoud Fakhr

Computer-aided diagnostic (CAD) systems provide fast and reliable diagnosis for medical images. In this paper, CAD system is proposed to analyze and automatically segment the lungs and classify each lung into normal or cancer. Using 70 different patients’ lung CT dataset, Wiener filtering on the original CT images is applied firstly as a preprocessing step. Secondly, we combine histogram analysis with thresholding and morphological operations to segment the lung regions and extract each lung separately. Amplitude-Modulation Frequency-Modulation (AM-FM) method thirdly, has been used to extract features for ROIs. Then, the significant AM-FM features have been selected using Partial Least Squares Regression (PLSR) for classification step. Finally,K-nearest neighbour (KNN), support vector machine (SVM), naïve Bayes, and linear classifiers have been used with the selected AM-FM features. The performance of each classifier in terms of accuracy, sensitivity, and specificity is evaluated. The results indicate that our proposed CAD system succeeded to differentiate between normal and cancer lungs and achieved 95% accuracy in case of the linear classifier.


Author(s):  
Yuejun Liu ◽  
Yifei Xu ◽  
Xiangzheng Meng ◽  
Xuguang Wang ◽  
Tianxu Bai

Background: Medical imaging plays an important role in the diagnosis of thyroid diseases. In the field of machine learning, multiple dimensional deep learning algorithms are widely used in image classification and recognition, and have achieved great success. Objective: The method based on multiple dimensional deep learning is employed for the auxiliary diagnosis of thyroid diseases based on SPECT images. The performances of different deep learning models are evaluated and compared. Methods: Thyroid SPECT images are collected with three types, they are hyperthyroidism, normal and hypothyroidism. In the pre-processing, the region of interest of thyroid is segmented and the amount of data sample is expanded. Four CNN models, including CNN, Inception, VGG16 and RNN, are used to evaluate deep learning methods. Results: Deep learning based methods have good classification performance, the accuracy is 92.9%-96.2%, AUC is 97.8%-99.6%. VGG16 model has the best performance, the accuracy is 96.2% and AUC is 99.6%. Especially, the VGG16 model with a changing learning rate works best. Conclusion: The standard CNN, Inception, VGG16, and RNN four deep learning models are efficient for the classification of thyroid diseases with SPECT images. The accuracy of the assisted diagnostic method based on deep learning is higher than that of other methods reported in the literature.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2648
Author(s):  
Muhammad Aamir ◽  
Tariq Ali ◽  
Muhammad Irfan ◽  
Ahmad Shaf ◽  
Muhammad Zeeshan Azam ◽  
...  

Natural disasters not only disturb the human ecological system but also destroy the properties and critical infrastructures of human societies and even lead to permanent change in the ecosystem. Disaster can be caused by naturally occurring events such as earthquakes, cyclones, floods, and wildfires. Many deep learning techniques have been applied by various researchers to detect and classify natural disasters to overcome losses in ecosystems, but detection of natural disasters still faces issues due to the complex and imbalanced structures of images. To tackle this problem, we propose a multilayered deep convolutional neural network. The proposed model works in two blocks: Block-I convolutional neural network (B-I CNN), for detection and occurrence of disasters, and Block-II convolutional neural network (B-II CNN), for classification of natural disaster intensity types with different filters and parameters. The model is tested on 4428 natural images and performance is calculated and expressed as different statistical values: sensitivity (SE), 97.54%; specificity (SP), 98.22%; accuracy rate (AR), 99.92%; precision (PRE), 97.79%; and F1-score (F1), 97.97%. The overall accuracy for the whole model is 99.92%, which is competitive and comparable with state-of-the-art algorithms.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chiaki Kuwada ◽  
Yoshiko Ariji ◽  
Yoshitaka Kise ◽  
Takuma Funakoshi ◽  
Motoki Fukuda ◽  
...  

AbstractAlthough panoramic radiography has a role in the examination of patients with cleft alveolus (CA), its appearances is sometimes difficult to interpret. The aims of this study were to develop a computer-aided diagnosis system for diagnosing the CA status on panoramic radiographs using a deep learning object detection technique with and without normal data in the learning process, to verify its performance in comparison to human observers, and to clarify some characteristic appearances probably related to the performance. The panoramic radiographs of 383 CA patients with cleft palate (CA with CP) or without cleft palate (CA only) and 210 patients without CA (normal) were used to create two models on the DetectNet. The models 1 and 2 were developed based on the data without and with normal subjects, respectively, to detect the CAs and classify them into with or without CP. The model 2 reduced the false positive rate (1/30) compared to the model 1 (12/30). The overall accuracy of Model 2 was higher than Model 1 and human observers. The model created in this study appeared to have the potential to detect and classify CAs on panoramic radiographs, and might be useful to assist the human observers.


Sign in / Sign up

Export Citation Format

Share Document