An Overview on Stochastic Global Optimization and its Multi-Domain Applications

Author(s):  
Venkateswarlu Chimmiri

Optimization is of great interest and it has widespread applications in engineering and science. It has become a major technology contributor to the growth of industry. It is extensively used in solving a wide variety of problems in design, operation, and analysis of engineering and technological processes. Optimization of large-scale problems pose difficulties concerning to dimensionality, differentiability, multimodality and nonlinearity in objective functions and constraints. In order to overcome such difficulties, there has been a rapidly growing interest in advanced optimization algorithms. Stochastic and evolutionary optimization algorithms are increasingly used to solve challenging optimization problems. These algorithms include genetic algorithm, simulated annealing, differential evolution, ant colony optimization, tabu search, particle swarm optimization, artificial bee colony algorithm, and cuckoo search algorithm. These algorithms are typically inspired by some phenomena from nature and they are robust. These algorithms do not require any gradient information and are even suitable to solve discrete optimization problems. These methods are extensively used to solve the optimization problems concerning to systems that are highly nonlinear, high dimensional, and noisy or for solving problems that are not easily solved by classical deterministic methods of optimization.

Author(s):  
Veeramani C ◽  
sharanya senthil

This paper presents an efficient metaheuristic approach for optimizing the generalized ratio problems such as the sum and multiplicative of linear or nonlinear ratio objective function with affine constraints. This paper focuses on the significance of hybrid techniques, which are implemented by using GA and ER-WCA to increase efficiency and robustness for solving linear and nonlinear generalized ratio problems. Initially, GA starts with an initial random population and it is processed by genetic operators. ER-WCA will observe and preserve the GAs fittest chromosome in each cycle and every generation. This Genetic ER-WCA algorithm is provided with better optimal solutions while solving constrained ratio optimization problems. Also, the effectiveness of the proposed genetic ER-WCA algorithm is analyzed while solving the large scale ratio problems. The results and performance of the proposed algorithm ensures a strong optimization and improves the exploitative process when compared to the other existing metaheuristic techniques. Numerical problems and applications are used to test the performance of the convergence and the accuracy of the approached method. The behavior of this Genetic ER-WCA algorithm is compared with those of evolutionary algorithms namely Neural Network Algorithm, Grey Wolf Optimization, ER-WCA, Water Cycle Algorithm, Firefly algorithm, Cuckoo search algorithm. The evaluated results show that the proposed algorithm increases the convergence and accuracy more than other existing algorithms.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Jie-sheng Wang ◽  
Shu-xia Li ◽  
Jiang-di Song

In order to improve convergence velocity and optimization accuracy of the cuckoo search (CS) algorithm for solving the function optimization problems, a new improved cuckoo search algorithm based on the repeat-cycle asymptotic self-learning and self-evolving disturbance (RC-SSCS) is proposed. A disturbance operation is added into the algorithm by constructing a disturbance factor to make a more careful and thorough search near the bird’s nests location. In order to select a reasonable repeat-cycled disturbance number, a further study on the choice of disturbance times is made. Finally, six typical test functions are adopted to carry out simulation experiments, meanwhile, compare algorithms of this paper with two typical swarm intelligence algorithms particle swarm optimization (PSO) algorithm and artificial bee colony (ABC) algorithm. The results show that the improved cuckoo search algorithm has better convergence velocity and optimization accuracy.


2019 ◽  
Vol 2 (3) ◽  
pp. 508-517
Author(s):  
FerdaNur Arıcı ◽  
Ersin Kaya

Optimization is a process to search the most suitable solution for a problem within an acceptable time interval. The algorithms that solve the optimization problems are called as optimization algorithms. In the literature, there are many optimization algorithms with different characteristics. The optimization algorithms can exhibit different behaviors depending on the size, characteristics and complexity of the optimization problem. In this study, six well-known population based optimization algorithms (artificial algae algorithm - AAA, artificial bee colony algorithm - ABC, differential evolution algorithm - DE, genetic algorithm - GA, gravitational search algorithm - GSA and particle swarm optimization - PSO) were used. These six algorithms were performed on the CEC’17 test functions. According to the experimental results, the algorithms were compared and performances of the algorithms were evaluated.


Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1840
Author(s):  
Nicolás Caselli ◽  
Ricardo Soto ◽  
Broderick Crawford ◽  
Sergio Valdivia ◽  
Rodrigo Olivares

Metaheuristics are intelligent problem-solvers that have been very efficient in solving huge optimization problems for more than two decades. However, the main drawback of these solvers is the need for problem-dependent and complex parameter setting in order to reach good results. This paper presents a new cuckoo search algorithm able to self-adapt its configuration, particularly its population and the abandon probability. The self-tuning process is governed by using machine learning, where cluster analysis is employed to autonomously and properly compute the number of agents needed at each step of the solving process. The goal is to efficiently explore the space of possible solutions while alleviating human effort in parameter configuration. We illustrate interesting experimental results on the well-known set covering problem, where the proposed approach is able to compete against various state-of-the-art algorithms, achieving better results in one single run versus 20 different configurations. In addition, the result obtained is compared with similar hybrid bio-inspired algorithms illustrating interesting results for this proposal.


2020 ◽  
Vol 9 (3) ◽  
pp. 24-38
Author(s):  
Cuong Dinh Tran ◽  
Tam Thanh Dao ◽  
Ve Song Vo

The cuckoo search algorithm (CSA), a new meta-heuristic algorithm based on natural phenomenon of the cuckoo species and Lévy flights random walk has been widely and successfully applied to several optimization problems so far. In the article, two modified versions of CSA, where new solutions are generated using two distributions including Gaussian and Cauchy distributions in addition to imposing bound by best solutions mechanisms are proposed for solving economic load dispatch (ELD) problems with multiple fuel options. The advantages of CSA with Gaussian distribution (CSA-Gauss) and CSA with Cauchy distribution (CSA-Cauchy) over CSA with Lévy distribution and other meta-heuristic are fewer parameters. The proposed CSA methods are tested on two systems with several load cases and obtained results are compared to other methods. The result comparisons have shown that the proposed methods are highly effective for solving ELD problem with multiple fuel options and/nor valve point effect.


Author(s):  
Anuj Kumar ◽  
Sangeeta Pant ◽  
S. B. Singh

In this chapter, authors briefly discussed about the classification of reliability optimization problems and their nature. Background of reliability and optimization has also been provided separately so that one can clearly understand the basic terminology used in the field of reliability optimization. Classification of various optimization techniques have also been discussed by the authors. Few metaheuristic techniques related to reliability optimization problems like Genetic Algorithm (GA), Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) have been discussed in brief. Thereafter, authors have discussed about Cuckoo Search Algorithm (CSA) which is the main focus of this chapter. Finally, Cuckoo Search Algorithm has been applied for solving reliability optimization problems of two complex systems namely complex bridge system and life support system in space capsule. Simulation results and conclusion have been presented in the last followed by the references.


Sign in / Sign up

Export Citation Format

Share Document