The Dynamic Responses of RC Columns Subjected to Blast Loading

2011 ◽  
Vol 105-107 ◽  
pp. 784-790
Author(s):  
Zhi Ping Kuang ◽  
Lei Xie ◽  
Qiu Hua Yang ◽  
Yi Ling Dong

The blast-resistant performance of columns which are the most important component in the whole structure is a crucial factor which influences the safety of the structures subjected to the blast loads. Studying dynamic responses of RC columns under the blast loading and improving the blast-resistant performance can prevent the structure from progressive collapse due to the damage of the columns in the blast loading, and give people more time to escape from the building in a dangerous situation. Then the same parameters are used to analyze the dynamic responses of RC columns under three typical blast loads. Conclusion can be used for structure blast-resistant design.

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Junhao Zhang ◽  
Shiyong Jiang ◽  
Bin Chen ◽  
Chunhai Li ◽  
Hao Qin

Columns of frame structures are the key load-bearing components and the exterior columns are susceptible to attack in terrorist blasts. When subjected to blast loads, the columns would suffer a loss of bearing capacity to a certain extent due to the damage imparted, which may induce the collapse of them and even cause the progressive collapse of the whole structure. In this paper, the high-fidelity physics-based finite element program LS-DYNA was utilized to investigate the dynamic behavior and damage characteristics of the widely used concrete-filled steel tube (CFST) columns subjected to blast loads. The established numerical model was calibrated with test data in open literatures. Possible damage modes of CFST columns under blast loading were analyzed, and the damage criterion based on the residual axial load capacity of the columns was adopted to assess the damage degree. A parametric study was conducted to investigate the effects of critical parameters such as blast conditions and column details on the damage degree of CFST columns. Based on the numerical simulation data, an empirical equation was proposed to estimate the variation of columns damage degree with the various parameters.


2015 ◽  
Vol 744-746 ◽  
pp. 315-318
Author(s):  
Hao Du ◽  
Chun Hua Liu

The terrorism and regional conflicts posed a threat to the world peace. Some terrorist explosions caused collapse of the buildings, which brought heavy tragedies to the human components. Therefore research on damage of structural components and resistance to damage have become the focus of our attention. Finite element software LS-DYNA was applied to simulating the response of reinforced concrete columns under blast loading. And analysis on dynamic response under different loading period was carried out. By studying on the stress and strain of reinforced concrete columns subjected to blast loading, the possible failure modes were obtained. In addition, the bearing capacities of concrete columns that are reinforced with carbon fiber and steel panel were analyzed, and the reinforcement effects were compared to provide reasonable reinforcement schemes for structures blast-resistant design.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Ravi Mudragada ◽  
S. S. Mishra

AbstractMany researchers have carried out experimental and numerical investigations to examine building structures’ response to explosive loads. Studies of bridges subjected to blast loads are limited. Hence, in this study, we present a case study on a cable-stayed bridge, namely, Charles River Cable-Stayed Bridge-Boston, to assess its robustness and resistance against the progressive collapse resulting from localized failure due to blast loads. Three different blast scenarios are considered to interpret the bridge performance to blast loads. To monitor the progressive failure mechanisms of the structural elements due to blast, pre-defined plastic hinges are assigned to the bridge deck. The results conclude that the bridge is too weak to sustain the blast loads near the tower location, and the progressive collapse is inevitable. Hence, to preserve this cable-stayed bridge from local and global failure, structural components should be more reinforced near the tower location. This case study helps the designer better understand the need for blast resistance design of cable-stayed bridges.


Author(s):  
A. A. Mutalib ◽  
Norhisham Bakhary

Kajian terhadap keupayaan struktur dalam menahan beban letupan menggunakan Fiber Reinforced Polymer (FRP) adalah sangat terhad. Dalam kajian ini, satu analisis terhadap keupayaan FRP bagi menahan beban letupan dilakukan. Tujuan analisis ini adalah untuk memperolehi hubungan antara kekuatan FRP, bilangan lapisan ketebalan FRP dan susunatur FRP bagi menahan kekuatan sesuatu beban letupan. Kajian ini dilakukan mengunakan model tiang diperkukuh dengan FRP yang dibina menggunakan perisian LS–DYNA. Ia melibatkan beberapa siri simulasi untuk meramalkan tindakbalas letupan dan kerosakkan pada tiang sekiranya sesuatu beban letupan dikenakan. Melalui simulasi ini, kekuatan FRP, bilangan lapisan ketebalan FRP dan susunatur FRP dapat ditentukan. melalui keputusan–keputusan yang diperolehi, pressure–impulse diagram (P–I) bagi tiang yang diperkukuhkan dengan FRP dapat dibentuk. Kata kunci: Pengukuhan; beban letupan; FRP; P–I diagrams There are only limited studies that directly correlate the increase in structural capacities in resisting the blast loads with the fiber reinforced polymer (FRP) strengthenin. In this paper, numerical analyses of dynamic response and damage of reinforced concrete (RC) columns strengthened with FRP to blast loads are carried out using the commercial software LS–DYNA. A series of simulations are performed to predict the blast response and damage of columns with different FRP type. The simulations also involved parametric studies by varying the FRP thickness, configuration, different column dimension, concrete strength, and longitudinal and transverse reinforcement ratio. The numerical results are used to develop pressure–impulse (P–I) diagrams of FRP strengthened RC columns. Based on the numerical results, the empirical formulae are derived to calculate the pressure and impulse asymptotes of the P–I diagrams of RC columns strengthened with FRP. Key words: Strengthening; blast loads; FRP; P–I diagrams


2019 ◽  
Vol 181 ◽  
pp. 107920 ◽  
Author(s):  
Fan Tang ◽  
Yanlong Sun ◽  
Zerong Guo ◽  
Wensu Chen ◽  
Mengqi Yuan

2019 ◽  
Vol 100 ◽  
pp. 520-535 ◽  
Author(s):  
Runqing Yu ◽  
Li Chen ◽  
Qin Fang ◽  
Haichun Yan ◽  
Guoliang Chen

2019 ◽  
Vol 22 (11) ◽  
pp. 2517-2529
Author(s):  
Xiao-Qing Zhou ◽  
Ming-Yu Wang ◽  
Li-Xiao Li

Architectural glass, especially the float glass, is a fragile part of a building. The architectural glass becomes a large amount of high-speed flying debris under bomb attacks and accidental explosions, thereby causing serious threat to residents. This study investigates the dynamic responses of a normal float glass subjected to blast loading using the explicit dynamic finite element software LS-DYNA. A JH-2 material model, which considers the strain rate effect and damage accumulation, is adopted for the float glass. A preliminary study shows that the present numerical model combined with reasonable material parameters can simulate the failure mode of the glass and the ejection velocity of glass fragments after failure. The verified model is then used to investigate the dynamic damage responses of the float glass under different loading cases. The damage assessment criterion of float glass is established on the basis of the glazing protection levels defined by the General Services Administration of the United States. Comprehensive simulations are conducted on different amounts of explosive and standoff distances. The degrees of glass damage under different loading cases are determined by combining the projection velocity of glass fragments after failure with a kinematic equation. Finally, the damage assessment diagram of float glass under different amounts of explosive is presented and compared with those in FEMA 426.


2020 ◽  
Vol 219 ◽  
pp. 110924 ◽  
Author(s):  
Gholamreza Gholipour ◽  
Chunwei Zhang ◽  
Asma Alsadat Mousavi

Sign in / Sign up

Export Citation Format

Share Document