scholarly journals Rollover Prevention System Dedicated to ATVs on Natural Ground

2012 ◽  
Vol 162 ◽  
pp. 505-514 ◽  
Author(s):  
Mathieu Richier ◽  
Roland Lenain ◽  
Benoit Thuilot ◽  
Christophe Debain

In this paper, an algorithm dedicated to light ATVs, which estimates and anticipates the rollover, is proposed. It is based on the on-line estimation of the Lateral Load Transfer (LLT), allowing the evaluation of dynamic instabilities. The LLT is computed thanks to a dynamical model split into two 2D projections. Relying on this representation and a low cost perception system, an observer is proposed to estimate on-line the terrain properties (grip conditions and slope), then allowing to deduce accurately the risk of instability. Associated to a predictive control algorithm, based on the extrapolation of riders action, the risk can be anticipated, enabling to warn the pilot and to consider the implementation of active actions.

2018 ◽  
Vol 41 (3) ◽  
pp. 859-874 ◽  
Author(s):  
Wanzhong Zhao ◽  
Lin Ji ◽  
Chunyan Wang

A rollover dynamic model that merges the active front steering model and differential braking model is established in this paper. After analyzing and improving the existing rollover evaluation method, a new evaluation method that takes both sprung mass and under-sprung mass into consideration is proposed. The reliability of the improved LTR (lateral load transfer rate) is confirmed by simulation results obtained from MATLAB and CARSIM where, all of three evaluation methods are taken under the same condition. The accuracy of the rollover evaluation index depends on the centroid height of under-sprung mass and the ratio of under-sprung mass and under-sprung mass. In order to achieve the desired tracking effect and anti-jamming capability, an integrated rollover control system based on active steering and differential braking is designed where a H∞ controller is adopted. The results of simulation under J-turn condition indicate that the control system has strong stability and robustness. When the vehicle is under the risk of rollover and reaches the setting threshold, the designed H∞ controller will actively keep the vehicle under the critical state.


Author(s):  
Mansour Ataei ◽  
Amir Khajepour ◽  
Soo Jeon

In order to develop a rollover prevention system, it is essential to have a reliable index that properly indicates real-time rollover danger during vehicle maneuvers. The existing rollover indices are mainly for un-tripped rollovers and have limitations in detecting tripped rollovers. This study introduces a general rollover index (GRI) for the detection of rollover in both tripped and un-tripped cases and also on flat and sloped roads. Based on the lateral load transfer ratio, the proposed index is analytically derived in terms of measurable vehicle parameters and state variables. The general rollover index considers both lateral and vertical road inputs and thus can indicate tripped rollovers in the instance of curbs, soft soil or bumps. Sensitivity analysis for the proposed index is also provided to evaluate the effects of different vehicle parameters and different state variables on tripped and un-tripped rollovers. The introduced index can be used not only for the development of active rollover prevention systems, but also for rollover analysis and design of vehicles. The performance of the introduced general rollover index is validated through simulations using a high-fidelity CarSim model for a SUV.


Robotica ◽  
1992 ◽  
Vol 10 (5) ◽  
pp. 447-459 ◽  
Author(s):  
A. Kotzev ◽  
D. B. Cherchas ◽  
P. D. Lawrence ◽  
N. Sepehri

SUMMARYThis paper presents some aspects of the behavior of hydraulically actuated heavy duty manipulators. This category of manipulators is used extensively in large resource based industries and any improvement in efficiency may result in major financial benefits. In this paper an adaptive control algorithm is used for a two rigid link manipulator driven by hydraulic actuators. The dynamic model of the manipulator is derived as well as the models of the hydraulic actuators including compliance, dead time and full dynamics of the servo valves. An adaptive control algorithm is considered since changes occur on-line in the system's parameters. The adaptive algorithm used is Generalized Predictive Control (GPC). The GPC uses a controlled autoregressive integrated moving average (CARIMA) type model and a cost function that minimizes a predicted future output error and future weighted control inputs to the plant, resulting in a sequence of future control increments. The procedure, in this work, does not separate the hydraulic actuator and the link dynamics into separate sub-systems, but controls them as one system. The changes in the system's parameters due to the hydraulics or the link dynamics can be estimated and the coefficients of the model adjusted without the necessity of identifying the exact cause of the changes.It was found in this work that the variations of the GPC control horizon can lead to faster response during transients and significantly reduced overshoot in the nonlinear hydraulic actuation system. An on-line change of the maximum output horizon is also introduced.This work shows the analysis and results of a two link manipulator with hydraulic actuators. It can be implemented on any hydraulically actuated manipulator with any number of links and actuators.Numerical simulations are performed on a Vax 3200 computer and the results are presented.


Author(s):  
Jiun-Yaw Wang ◽  
◽  
Mao-Lin Chen ◽  
Ching-Long Shih ◽  

To develop and evaluate improved on-line flying-shear equipment control tasks, we introduces a Generalized Predictive Control (GPC) PID controller for positioning control of a flying-shear cutter. After successful trials and excellent regulation results, the GPC-based PID control algorithm with constraints is proved to be very robust.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Zhihuai Xiao ◽  
Suili Meng ◽  
Na Lu ◽  
O. P. Malik

The hydroturbine generator regulating system can be considered as one system synthetically integrating water, machine, and electricity. It is a complex and nonlinear system, and its configuration and parameters are time-dependent. A one-step-ahead predictive control based on on-line trained neural networks (NNs) for hydroturbine governor with variation in gate position is described in this paper. The proposed control algorithm consists of a one-step-ahead neuropredictor that tracks the dynamic characteristics of the plant and predicts its output and a neurocontroller to generate the optimal control signal. The weights of two NNs, initially trained off-line, are updated on-line according to the scalar error. The proposed controller can thus track operating conditions in real-time and produce the optimal control signal over the wide operating range. Only the inputs and outputs of the generator are measured and there is no need to determine the other states of the generator. Simulations have been performed with varying operating conditions and different disturbances to compare the performance of the proposed controller with that of a conventional PID controller and validate the feasibility of the proposed approach.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Sung Hyun Kim

This paper presents an efficient MPC algorithm for uncertain time-varying systems with input constraints. The main advantage of this algorithm with respect to other published algorithms is to significantly enlarge the size of the stabilization set without regard to computational burdens. Specially, we introduce an off-line region-dependent MPC scheme to avoid the size limitation of the control horizon caused by huge on-line computational burdens. A numerical example is included to illustrate the validity of the result.


2013 ◽  
Vol 62 (7) ◽  
pp. 2928-2936 ◽  
Author(s):  
Chad Larish ◽  
Damrongrit Piyabongkarn ◽  
Vasilios Tsourapas ◽  
Rajesh Rajamani

Sign in / Sign up

Export Citation Format

Share Document