Application on Network Traffic Prediction Based on Least Squares Support Vector Machine

2010 ◽  
Vol 20-23 ◽  
pp. 364-369 ◽  
Author(s):  
Yu Zhuo Ren ◽  
Ke Wen Xia ◽  
Yan Wang ◽  
Jun Shi

The network traffic is one of the important metrics for describing network behaviors, it plays an important role in network design, network protocol and traffic project implementation. In order to solve some problems in network traffic prediction, according to actual data for network- monitoring traffic, an approach to network traffic prediction is presented based on least squares support vector machine (LS-SVM), it mainly includes selecting for sample data of network traffic, normalization processing of data, network traffic model trained by LS-SVM and network traffic prediction, etc. Actual application results indicate that the method of network traffic prediction has high accuracy and good feasibility.

2009 ◽  
Vol 35 (2) ◽  
pp. 214-219 ◽  
Author(s):  
Xue-Song WANG ◽  
Xi-Lan TIAN ◽  
Yu-Hu CHENG ◽  
Jian-Qiang YI

2019 ◽  
Vol 13 ◽  
Author(s):  
Yan Zhang ◽  
Ren Sheng

Background: In order to improve the efficiency of fault treatment of mining motor, the method of model construction is used to construct the type of kernel function based on the principle of vector machine classification and the optimization method of parameters. Methodology: One-to-many algorithm is used to establish two kinds of support vector machine models for fault diagnosis of motor rotor of crusher. One of them is to obtain the optimal parameters C and g based on the input samples of the instantaneous power fault characteristic data of some motor rotors which have not been processed by rough sets. Patents on machine learning have also shows their practical usefulness in the selction of the feature for fault detection. Results: The results show that the instantaneous power fault feature extracted from the rotor of the crusher motor is obtained by the cross validation method of grid search k-weights (where k is 3) and the final data of the applied Gauss radial basis penalty parameter C and the nuclear parameter g are obtained. Conclusion: The model established by the optimal parameters is used to classify and diagnose the sample of instantaneous power fault characteristic measurement of motor rotor. Therefore, the classification accuracy of the sample data processed by rough set is higher.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Shengpu Li ◽  
Yize Sun

Ink transfer rate (ITR) is a reference index to measure the quality of 3D additive printing. In this study, an ink transfer rate prediction model is proposed by applying the least squares support vector machine (LSSVM). In addition, enhanced garden balsam optimization (EGBO) is used for selection and optimization of hyperparameters that are embedded in the LSSVM model. 102 sets of experimental sample data have been collected from the production line to train and test the hybrid prediction model. Experimental results show that the coefficient of determination (R2) for the introduced model is equal to 0.8476, the root-mean-square error (RMSE) is 6.6 × 10 (−3), and the mean absolute percentage error (MAPE) is 1.6502 × 10 (−3) for the ink transfer rate of 3D additive printing.


2021 ◽  
Vol 13 (5) ◽  
pp. 1004
Author(s):  
Song Li ◽  
Tianhe Xu ◽  
Nan Jiang ◽  
Honglei Yang ◽  
Shuaimin Wang ◽  
...  

The meteorological reanalysis data has been widely applied to derive zenith tropospheric delay (ZTD) with a high spatial and temporal resolution. With the rapid development of artificial intelligence, machine learning also begins as a high-efficiency tool to be employed in modeling and predicting ZTD. In this paper, we develop three new regional ZTD models based on the least squares support vector machine (LSSVM), using both the International GNSS Service (IGS)-ZTD products and European Centre for Medium-Range Weather Forecasts Reanalysis 5 (ERA5) data over Europe throughout 2018. Among them, the ERA5 data is extended to ERA5S-ZTD and ERA5P-ZTD as the background data by the model method and integral method, respectively. Depending on different background data, three schemes are designed to construct ZTD models based on the LSSVM algorithm, including the without background data, with the ERA5S-ZTD, and with the ERA5P-ZTD. To investigate the advantage and feasibility of the proposed ZTD models, we evaluate the accuracy of two background data and three schemes by segmental comparison with the IGS-ZTD of 85 IGS stations in Europe. The results show that the overall average Root Mean Square Errors (RMSE) value of all sites is 30.1 mm for the ERA5S-ZTD, and 10.7 mm for the ERA5P-ZTD. The overall average RMSE is 25.8 mm, 22.9 mm, and 9 mm for the three schemes, respectively. Moreover, the overall improvement rate is 19.1% and 1.6% for the ZTD model with ERA5S-ZTD and ERA5P-ZTD, respectively. In order to explore the reason of the lower improvement for the ZTD model with ERA5P-ZTD, the loop verification is performed by estimating the ZTD values of each available IGS station. In actuality, the monthly improvement rate of estimated ZTD is positive for most stations, and the biggest improvement rate can even reach about 40%. The negative rate mainly comes from specific stations, these stations are located on the edge of the region, near the coast, as well as the lower similarity between the individual verified station and training stations.


Sign in / Sign up

Export Citation Format

Share Document