Thermal Characteristic Analysis on the Headstock of a High Precision CNC Machine Tool

2012 ◽  
Vol 201-202 ◽  
pp. 157-161
Author(s):  
Yao Man Zhang ◽  
Jia Liang Han ◽  
Ren Jun Gu

The performances of the precision machine tool will be influenced by its thermal characteristics seriously, and accurately predict the thermal characteristic of the key component of the machine tool is helpful to improve the design level. The headstock of a high precision CNC lathes has been regarded as the research objects, and the thermal properties and its influence on the performance of the machine tool are studied. Finite element analysis model of the headstock has been constructed, and the simulation calculations of the steady temperature field distribution and thermal equilibrium time of the headstock are calculated, and then the analysis to identify the thermal deformation trends of the spindle assembly and the heat distortion of the headstock are also been done. Some of the key factors that have significant influence on the thermal characteristic of the high precision machine tools are also studied. The analysis reveals that the performances of the machine tool will be influenced by the hot asymmetric, the study lays a foundation for the optimization design and thermal error compensation of the spindle assembly.

2009 ◽  
Vol 407-408 ◽  
pp. 135-139
Author(s):  
Yao Man Zhang ◽  
Xiu Li Lin ◽  
Chun Shi Liu ◽  
Guang Qi Cai

To design a machine tool successfully, its essential parts should be analyzed and evaluated after design but before prototype being made. The spindle assembly is one of the most essential parts of high speed machine tool, so how the dynamic characteristics of the spindle assembly affect the performance of high speed NC machine tool are of great significance and should be studied. This paper’s research is based on a high speed machine tool manufactured by some plant. The finite element analysis model of the spindle assembly of the high speed machine tool was developed by taking the advantage of the spring-damper element to simulate the bearing supports. The modal analysis was made to confirm the dynamic characteristics of the spindle assembly, and the results were compared with the testing ones.


2011 ◽  
Vol 291-294 ◽  
pp. 2302-2305 ◽  
Author(s):  
Yao Man Zhang ◽  
Qi Wei Liu ◽  
Jia Liang Han

The final manufacturing performances of the machine tools will be influenced by its thermal characteristics seriously and accurately predict thermal characteristic is helpful to improve the machine design level. Based on the analysis on factors that influence machine thermal characteristic, finite element analysis model of the headstock has been constructed, and the steady temperature field distribution and thermal equilibrium time calculation of the headstock are calculated, and then the temperature field and thermal deformation of the headstock under the action of heat and structure load have been calculated, and analysis to identify the trend of the spindle assembly and headstock heat distortion are also been done. The analysis reveals the machine processing performance influence will be influenced by the hot asymmetric, the study give priority to spindle assembly of optimization design, thermal error compensation.


2013 ◽  
Vol 313-314 ◽  
pp. 754-758
Author(s):  
Yao Man Zhang ◽  
Ren Jun Gu ◽  
Jia Liang Han

Theperformances of the turning center will be influenced by its thermalcharacteristics seriously, and accurately predict thermal characteristic of themachine tool is helpful to improve the design level. The headstock of a high precision turning center has been regarded as the researchobjects, and its thermal properties and influence on the performance of the turningcenter are studied. First based the finite element analysis model that has beenconstructed, the steady temperature field distribution and thermal equilibriumtime of the headstock are calculated, and then the temperature field andthermal deformation have been calculated also, and analysis to identify thetrend of the headstock heat distortion are also been done. Some of the keyfactors on the thermal performance of turning center are also studied. Thestudy lays a foundation for the thermal error compensation of the headstock.


2012 ◽  
Vol 507 ◽  
pp. 217-221 ◽  
Author(s):  
Zhong Qi Sheng ◽  
Sheng Li Dai ◽  
Yu Chang Liu ◽  
Hua Tao Fan

Relying on HTC3250µn and HTC2550hs high-speed precision CNC turning center, this paper analyzes the static and dynamic characteristics of CNC machine tool spindle with finite element analysis software. Based on the results and using ANSYS software, this paper considers the volume and amplitude of vibration model as the objective function to optimize the size of the spindle. According to the optimized size of spindle, this paper analyzes the static and dynamic characteristics of the CNC machine tool spindle again and concludes the optimization results.


2009 ◽  
Vol 626-627 ◽  
pp. 447-452 ◽  
Author(s):  
Yao Man Zhang ◽  
S.H. Wang ◽  
Yong Xian Liu

One of the important factors resulting in the performances of the machinery is its dynamic characteristics. The spindle assembly is one of the usual parts of NC machine tool, so its dynamic-static characteristics will affect the performances of machine tool. The study is based on a NC machine tool produced by a certain plant of machine tools. The finite element dynamic analysis model of spindle assembly was developed by introducing two or three groups of circumferential spring damper elements which are arrange at different angle around the spindle, and the effect of different supporting conditions and different arrange angle on the modal analysis of the spindle assembly were discussed. The finite element analysis on spindle and spindle assembly has been made to confirm its dynamic characteristics. Then the finite element analysis models are validated by some experiments.


Author(s):  
Cunman Liang ◽  
Fujun Wang ◽  
Qingguo Yang ◽  
Yanling Tian ◽  
Xingyu Zhao ◽  
...  

This paper presents a novel 2-DOF XY table with high-precision positioning to improve the efficiency and precision of micro-electro-mechanical system packaging. The XY table, which is supported by aerostatic bearings to realize high-precision positioning motion, is directly driven by two linear voice coil actuators. The motion decoupling between the X-and Y-axes is realized through a novel aerostatic decoupling mechanism, by which the mass and inertia of motion parts are reduced significantly. The mechanical structure of the XY table is designed and the decoupling mechanism is studied. Based on the Navier–Stokes equation, the influences of orifice diameter and lubrication gap on the carrying capacity as well the static stiffness of the aerostatic bearings are analyzed. The parameters of the aerostatic bearings are determined by single factor method. Using the finite element method, the static, modal, and transient analyses of the developed positioning table are carried out to investigate the characteristics of the positioning table. The results show that the positioning table provides good performance and can also provide important information for the optimization design and control of this kind of the positioning table.


2011 ◽  
Vol 52-54 ◽  
pp. 1206-1211 ◽  
Author(s):  
Huai Xing Wen ◽  
Mei Yan Wang

The thermal characteristics of the motorized spindle determines maching qualities and cutting capabilities, and is one of the important factors influencing the precision of the high speed NC machine tool. To improve the performance of the high speed machine tool, it is important to study the thermal characteristics of the motorized spindle. It had been studied in two ways: one is finite element analysis by Ansys software, in which the finite element analysis model was built. According to the actual working condition, the heat source and the heat transfer coefficient of every part are calculated. On this basis, the temperature field and temperature rises were gotten in Ansys software. The other way is temperature rises experiment on the motorized spindle test platform. The result was shown in the form of curve. These two ways shown the same result: the highest temperature rise appears in the area of electromotor, then followed by the rolling bearing .The result provides the necessary theory basis for optimizing the structure of the motorized spindle and establishes a basis for the research and application about the high speed spindle.


2013 ◽  
Vol 353-356 ◽  
pp. 941-945
Author(s):  
Wei Yu Wang ◽  
Tuo Zhao

Based on practical engineering, numerical analysis model was established by using finite element analysis software. The rules about raft settlement, pile-top counterforce, soil counterforce were analysed after variable pile diameter. It is more favorable on settlement and counterforce after variable pile diameter than Original design. There is important academic significance and application value on pile raft foundation optimal design.


2013 ◽  
Vol 427-429 ◽  
pp. 90-93 ◽  
Author(s):  
Wen Qing Wang

Based on the principle of orthogonal test, the optimization model of sunflower shaped arch bridge scheme was set up. The five key design parameters were selected as the main factors. The four computation index, which reflect mechanical performance, were selected as analytical objects. The 16 orthogonal experiment schemes were arranged with four levels orthogonal table . The curves of the factors to the index were obtained from the mechanical response under dead load and live load through the finite element analysis model. By the range analysis method, the influential levels of the factors to the index were obtained from the result of the test , and the factor optimizatuion level of the factors was determined to further optimize the layout scheme of the sunfloawer shaped arch bridge.


Sign in / Sign up

Export Citation Format

Share Document