Efficiency Sensitivity of Two-Stage Planetary Gear Transmission System Based on Graph Theory

2012 ◽  
Vol 215-216 ◽  
pp. 1058-1061
Author(s):  
Ming Chen

This paper first establishes the graphic model and basic circuit equation of dual planetary gear transmission system based on modified complex joint picture representation method and basic circuit method. And then according to this model analyses the rotating relation and torque relation of dual planetary gear transmission system deduces the calculation formula of transmission rate efficiency. The sensitivity of each gear ratio to transmission efficiency is defined with the method of sensitivity analysis. By calculation and analysis, the influence degree of each gear ratio on transmission efficiency is obtained. The result can provide a basis for the design and optimization of dual planetary gear transmission system.

2021 ◽  
Vol 104 (3) ◽  
pp. 003685042110356
Author(s):  
Hexu Yang ◽  
Xiaopeng Li ◽  
Jinchi Xu ◽  
Zemin Yang ◽  
Renzhen Chen

According to the working characteristics of a 1.5 MW wind turbine planetary gear system under complex and random wind load, a two-parameter Weibull distribution model is used to describe the distribution of random wind speed, and the time-varying load caused by random wind speed is obtained. The nonlinear dynamic model of planetary gear transmission system is established by using the lumped parameter method, and the relative relations among various components are derived by using Lagrange method. Then, the relative relationship between the components is solved by Runge Kutta method. Considering the influence of random load and stiffness ratio on the planetary gear transmission system, the nonlinear dynamic response of cyclic load and random wind load on the transmission system is analyzed. The analysis results show that the variation of the stiffness ratio makes the planetary gear have abundant nonlinear dynamics behavior and the planetary gear can get rid of chaos and enter into stable periodic motion by changing the stiffness ratio properly on the premise of ensuring transmission efficiency. For the variable pitch wind turbine, the random change of external load increases the instability of the system.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Qilin Huang ◽  
Yong Wang ◽  
Zhipu Huo ◽  
Yudong Xie

A nonlinear purely rotational dynamic model of a multistage closed-form planetary gear set formed by two simple planetary stages is proposed in this study. The model includes time-varying mesh stiffness, excitation fluctuation and gear backlash nonlinearities. The nonlinear differential equations of motion are solved numerically using variable step-size Runge-Kutta. In order to obtain function expression of optimization objective, the nonlinear differential equations of motion are solved analytically using harmonic balance method (HBM). Based on the analytical solution of dynamic equations, the optimization mathematical model which aims at minimizing the vibration displacement of the low-speed carrier and the total mass of the gear transmission system is established. The optimization toolbox in MATLAB program is adopted to obtain the optimal solution. A case is studied to demonstrate the effectiveness of the dynamic model and the optimization method. The results show that the dynamic properties of the closed-form planetary gear transmission system have been improved and the total mass of the gear set has been decreased significantly.


2020 ◽  
Vol 30 (06) ◽  
pp. 2050080
Author(s):  
Ling Xiang ◽  
Zeqi Deng ◽  
Aijun Hu

The transverse-torsional nonlinear model of multistage gear transmission system which is comprised of a planetary gear set and two parallel gear stages is proposed with time-varying meshing stiffness, comprehensive gear errors and gear backlash. The nonlinear dynamic responses are analyzed by applying excitation frequency and support stiffness as the bifurcation parameters. The motions of the system are identified through global bifurcation diagram, largest Lyapunov exponent (LLE) and Poincaré map. The numerical results demonstrate that the support stiffness affects the system, especially on planetary gear set. The motions of the system with the changes of the support stiffness are diverse including some different multiperiodic motions. Also, the state of the system undergoes 2T-periodic motion, chaos, quasi-periodic behavior and multiperiodic motion. For the support stiffness or other nonlinear factors of the gear system, the suitable range of working frequencies could make the system stable. Correspondingly, parameters of the system should be designed properly and controlled for the better operation and enhancing the life of the system.


2013 ◽  
Vol 569-570 ◽  
pp. 489-496 ◽  
Author(s):  
Yong Gui ◽  
Qin Kai Han ◽  
Zheng Li ◽  
Zhi Ke Peng ◽  
Fu Lei Chu

Tooth breakage is a typical failure form of wind-turbine planetary gear transmission system, it is important to study the influence of tooth breakage on vibration characteristics of planetary gear transmission system. In this paper, considering the tooth breakage defect, a lumped parameter vibration model of a planetary gear system with time-periodic mesh stiffness is established. Effects of the length and width of tooth breakage on meshing stiffness and dynamic response are discussed in detail. The relation between characteristic frequency of the tooth breakage fault and rotating speeds is pointed out. Several statistical indicators are utilized to show the influence of two parameters (length of planet tooth breakage and input speed) on the dynamic response of the system. Experiments are carried out to verify the simulation results. These results would be useful for fault diagnosis of wind turbine transmission system at different operation conditions.


Author(s):  
Cheng Wang

Planetary gear transmission system has been widely used in the field of aerospace equipment, automobiles, ships, etc. High power density design is an important development direction for transmission machinery, but there is a lack of systematic and deepening research in planetary gear transmission system field. Taken the most widely used 2K–H-type planetary gear transmission system as research object, a design method of high power density considering volume and efficiency is put forward. First, the transmission efficiency model of 2K–H-type planetary gear transmission system is built on the basis of calculation of single gear pair meshing efficiency instead of the look-up table method. Second, the volume model of 2K–H-type planetary gear transmission system is built according to the structure of gear. Finally, the smallest volume and the minimum power loss of 2K–H-type planetary gear transmission system are the target of optimization, and the linear-weighted combination method is used to construct target function. Taken a 2K–H-type planetary gear reducer in some machine tool as an example, the optimization is carried out. The results show that the power loss of optimized system is reduced by 11.42%, and the volume of system is reduced by 25.2%.


2010 ◽  
Vol 450 ◽  
pp. 345-348 ◽  
Author(s):  
Fan Kai Kong ◽  
Su Ge Yin ◽  
Hong Yun Lin ◽  
Qi Hu Sheng

The half-direct-drive transmission is conducted for the transmission system of tidal current power stations using a small speed-up ratio of planetary gearbox between turbine and generator. A design model is developed for the optimization of the planetary gear transmission system. And a mixed genetic algorithm is applied on the basis of fundamentals of genetic algorithm to carry out the optimization. From the example calculation, a better design scheme is obtained by the optimization.


2011 ◽  
Vol 86 ◽  
pp. 510-513
Author(s):  
Fa Jia Li ◽  
Ru Peng Zhu ◽  
He Yun Bao ◽  
Xiao Zhen Li

The (4+N) DOFs (degrees of freedom) nonlinear dynamic model of the planetary gear transmission system has been established which include the horizontal displacement, vertical displacement of sun gear, eccentricity error excitation of the sun gear and planetary gear, and gear backlash. The nonlinear dynamic equations was dealt with non-dimensional. Non-dimensional relative displacement of sun gear with planet gears and planet gears with internal gear were solved by using the method of numerical integration. Load sharing coefficients of every planet gear was got by dealt with the result of dynamic equations. The differences of non-dimensional relative displacement and load sharing coefficient were contrasted.


Sign in / Sign up

Export Citation Format

Share Document