Precipitation Characteristics of CaCO3 Scaling on Stainless Steel in Cooling Tower Condition

2012 ◽  
Vol 226-228 ◽  
pp. 1029-1033
Author(s):  
Jian Sheng ◽  
Hua Zhang

Stainless steel 304 and 316 (ss304 and ss316) are widely used in heat exchangers, and the precipitation characteristics of CaCO3 is the first step to research anti-fouling technology. CaCO3 scaling precipitated on coupons from 1.0mmol/l CaCO3 solution at 35°C. By weighing the coupons before and after static reaction experiments to get the mass of scaling and the morphology was taken by Scanning Electron Microscope (SEM). The results show that at the same condition there is more fouling on ss304 than ss316. Higher pH not only promotes square aragonite and calcite and square aragonite gradually recrystallize to calcite but also makes both homogeneous and heterogeneous nucleation rate increasing, and the former increases more, so the fouling mass is bigger at lower pH than higher pH; fouling grows at the place with higher surface energy first and then extend to surrounding place, and when the number increases and crystals grow big and connect each other to form fouling layer.

1980 ◽  
Vol 59 (2) ◽  
pp. 124-128 ◽  
Author(s):  
Y. Galindo ◽  
K. McLachlan ◽  
Z. Kasloff

A silver-plating technique was developed in an effort to produce good mechanical bonding characteristics between stainless steelpins and amalgam. Metallographic microscope and scanning electron microscope (SEM) studies were made to assess the presence, or otherwise, of such a bond between (a) the silver layer plating and the surface of the stainless steel pins, and (b) and silver plating and the amalgam. Unplated stainless steel and sterling silver pins were used as a control and as a comparison, respectively. A "rubbing" technique of condensation was devised to closely adapt amalgam to the pins. It is concluded that there is strong evidence for the existence of a good bond between the plated pins and amalgam. The mechanical performance of the bond is discussed elsewhere. 1.


2016 ◽  
Vol 1133 ◽  
pp. 324-328 ◽  
Author(s):  
Muhammad Aslam ◽  
Faiz Ahmad ◽  
P.S.M. Bm-Yousoff ◽  
Khurram Altaf ◽  
Afian Omar ◽  
...  

Optimization of solvent debinding process parameters for powder injection molded 316L stainless steel (SS) has been reported in this research work. Powder gas atomized (PGA) 316L SS was blended with a multicomponent binder in Z-blade mixer at 170°C ± 5°C for 90 minutes. Feedstock was successfully injected at temperature 170 ± 5°C. Injection molded samples were immersed in n-heptane for 2h, 4h, 6h and 8h at temperatures 50°C ,55°C and 60°C to extract the soluble binder components. Scanning electron microscope (SEM) results attested that soluble binder components were completely extracted from injection molded samples at temperature 55°C after 6h.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Qiuxiang Zhang ◽  
Xinhua Liu ◽  
Yankun Ren ◽  
Lifeng Wang ◽  
Yuan Hu

Aiming to study the effect of particle size on the wear property of magnetorheological fluid (MRF), experiment materials, preparation process, and test methods are elaborated, and three different MRF samples consisting of particles of different size are prepared. Test experiments are carried out and the effect of particle size on the wear property of MRF is discussed. Moreover, the microstructures of particles extracted from MRF obtained before and after the wear experiments are observed by scanning electron microscope (SEM). Experimental results show that the particle size has a significant effect on wear property of MRF. Furthermore, the MRF with particles of 1.5–2.8 μm diameter on average is good for the requirement of engineering applications.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Lena Porsmo Stoveland ◽  
Tine Frøysaker ◽  
Maartje Stols-Witlox ◽  
Terje Grøntoft ◽  
Calin Constantin Steindal ◽  
...  

AbstractLow-risk removal of embedded surface soiling on delicate heritage objects can require novel alternatives to traditional cleaning systems. Edvard Munch’s monumental Aula paintings (1911–16) have a long history of exposure to atmospheric pollution and cleaning campaigns that have compromised the appearance and the condition of these important artworks. Soiling removal from porous and water-sensitive, unvarnished oil paintings continues to be a major conservation challenge. This paper presents the approach and results of research into the effect and efficiency of three novel systems used for soiling removal: soft particle blasting, CO2-snow blasting, and Nanorestore Gel® Dry and Peggy series hydrogels. Cleaning tests were performed on accelerated-aged and artificially soiled mock-ups consisting of unvarnished oil paint and chalk-glue grounds. Visual and analytical assessment (magnification using a light microscope and scanning electron microscope, as well as colour- and gloss measurement) was carried out before and after mock-up cleaning tests and the results were compared to those obtained using the dry polyurethane sponges employed in the most recent Aula surface cleaning campaign (2009–11). Although the results varied, the Nanorestore Gel® series proved promising with respect to improved soiling removal efficiency, and reduced pigment loss for the water-sensitive surfaces evaluated, compared to dry sponges.


2016 ◽  
Vol 685 ◽  
pp. 743-747 ◽  
Author(s):  
E.B. Golushkova ◽  
Alexander P. Ilyin ◽  
A.V. Mostovshchikov

The paper presents results of scanning electron microscope (SEM) investigations, differential thermal and elemental analyses, and infrared (IR) spectroscopy of micron powders obtained by thermal decomposition of cupric and nickel oxalates before and after their blending with oil. The oil treatment modifies the powder compositions, heteroorganic compounds extracted from oil are observed on their surface. The analysis shows that materials based on copper and nickel micron powders can be used for the prepurification of crude hydrocarbons from heteroatomic compounds.


Author(s):  
Omotayo Sanni ◽  
Jianwei Ren ◽  
Tien-Chien Jen

Abstract This study examined the corrosion inhibiting properties of parsley (petroselinum sativum) essential oils, for Type 430 ferritic stainless steel in 0.5 molar sulphuric acid solutions. In this study, weight loss, electrochemical and scanning electron microscope techniques were used in gaining a detailed understanding of inhibition effects of parsley (petroselinum sativum) essential oils (PEO) on Type 430 ferritic stainless steel corrosion. The inhibitor studied exhibits good anti-corrosion performance with 98.65 % inhibition efficiency. This result could be ascribed to the adsorbed PEO on the surface of the stainless steel, and this was verified by surface visualization using optical and scanning electron microscope techniques while the crystallographic variation of the inhibited sample is studied by X-ray diffraction (XRD). The adsorption of PEO onto stainless steel surface is controlled by Langmuir adsorption isotherms. Optical images of non-inhibited specimens showed a severely corroded surface with a visible macro pit on the stainless steel from sulphuric solutions. The inhibited sample shows improved surface owing to the surface protection effect of PEO molecules. The corrosion inhibition performance of PEO is due to the presence of active constituents which enhanced the film formation over the surface of the metal, thus, mitigating corrosion.


Sign in / Sign up

Export Citation Format

Share Document