Traffic Incident Duration Prediction Based on K-Nearest Neighbor

2012 ◽  
Vol 253-255 ◽  
pp. 1675-1681 ◽  
Author(s):  
Yuan Wen ◽  
Shu Yan Chen ◽  
Qin Yuan Xiong ◽  
Ru Bi Han ◽  
Shi Yu Chen

Prediction of incident duration is very important in Advanced Intelligent Traffic Incident Management and the accuracy of prediction can provide exact information for travellers. It is widely used in the area of ITS. In this paper, K-Nearest neighbor (KNN) is employed to predict the incident duration, which puts forward a new distance metric and weight determination method. This KNN model is created based on the incident data set collected by DVS-Center for Transport and Navigation, Ministry of Transport, Public Works and Management, the Netherlands. Moreover, a simulation based on Matlab is used for incident duration prediction and optimizing the best k value. Finally, an error analysis is made based on this simulation. As a result, this method (KNN) obtains high accuracy and has a better effect than Bayesian Decision Method-Based Tree Algorithm. So it can be effectively applied to intelligent traffic incident detection and clearance systems.

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Qiang Shang ◽  
Derong Tan ◽  
Song Gao ◽  
Linlin Feng

Predicting traffic incident duration is important for effective and real-time traffic incident management (TIM), which helps to minimize traffic congestion, environmental pollution, and secondary incident related to this incident. Traffic incident duration prediction methods often use more input variables to obtain better prediction results. However, the problems that available variables are limited at the beginning of an incident and how to select significant variables are ignored to some extent. In this paper, a novel prediction method named NCA-BOA-RF is proposed using the Neighborhood Components Analysis (NCA) and the Bayesian Optimization Algorithm (BOA)-optimized Random Forest (RF) model. Firstly, the NCA is applied to select feature variables for traffic incident duration. Then, RF model is trained based on the training set constructed using feature variables, and the BOA is employed to optimize the RF parameters. Finally, confusion matrix is introduced to measure the optimized RF model performance and compare with other methods. In addition, the performance is also tested in the absence of some feature variables. The results demonstrate that the proposed method not only has high accuracy, but also exhibits excellent reliability and robustness.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Weiwei Zhu ◽  
Jinglin Wu ◽  
Ting Fu ◽  
Junhua Wang ◽  
Jie Zhang ◽  
...  

Purpose Efficient traffic incident management is needed to alleviate the negative impact of traffic incidents. Accurate and reliable estimation of traffic incident duration is of great importance for traffic incident management. Previous studies have proposed models for traffic incident duration prediction; however, most of these studies focus on the total duration and could not update prediction results in real-time. From a traveler’s perspective, the relevant factor is the residual duration of the impact of the traffic incident. Besides, few (if any) studies have used dynamic traffic flow parameters in the prediction models. This paper aims to propose a framework to fill these gaps. Design/methodology/approach This paper proposes a framework based on the multi-layer perception (MLP) and long short-term memory (LSTM) model. The proposed methodology integrates traffic incident-related factors and real-time traffic flow parameters to predict the residual traffic incident duration. To validate the effectiveness of the framework, traffic incident data and traffic flow data from Shanghai Zhonghuan Expressway are used for modeling training and testing. Findings Results show that the model with 30-min time window and taking both traffic volume and speed as inputs performed best. The area under the curve values exceed 0.85 and the prediction accuracies exceed 0.75. These indicators demonstrated that the model is appropriate for this study context. The model provides new insights into traffic incident duration prediction. Research limitations/implications The incident samples applied by this study might not be enough and the variables are not abundant. The number of injuries and casualties, more detailed description of the incident location and other variables are expected to be used to characterize the traffic incident comprehensively. The framework needs to be further validated through a sufficiently large number of variables and locations. Practical implications The framework can help reduce the impacts of incidents on the safety of efficiency of road traffic once implemented in intelligent transport system and traffic management systems in future practical applications. Originality/value This study uses two artificial neural network methods, MLP and LSTM, to establish a framework aiming at providing accurate and time-efficient information on traffic incident duration in the future for transportation operators and travelers. This study will contribute to the deployment of emergency management and urban traffic navigation planning.


Transport ◽  
2015 ◽  
Vol 33 (1) ◽  
pp. 22-31 ◽  
Author(s):  
Shi Wang ◽  
Ruimin Li ◽  
Min Guo

Predicting the duration time of incidents is important for effective real-time Traffic Incident Management (TIM). In the current study, the k-Nearest Neighbor (kNN) algorithm is employed as a nonparametric regression approach to develop a traffic incident duration prediction model. Incident data from 2008 on the third ring expressway mainline in Beijing are collected from the local Incident Reporting and Dispatching System. The incident sites are randomly distributed along the mainline, which is 48.3 km long and has six two-way lanes with a single-lane daily volume of more than 10000 veh. The main incident type used is sideswipe and the average incident duration time is 32.69 min. The most recent one-fourth of the incident records are selected as testing set. Vivatrat method is employed to filter anomalous data for the training set. Incident duration time is set as the dependent variable in Kruskal–Wallis test, and six attributes are identified as the main factors that affect the length of duration time, which are ‘day first shift’, ‘weekday’, ‘incident type’, ‘congestion’, ‘incident grade’ and ‘distance’. Based on the characteristics of duration time distribution, log transformation of original data is tested and proven to improve model performance. Different distance metrics and prediction algorithms are carefully investigated. Results demonstrate that the kNN model has better prediction accuracy using weighted distance metric based on decision tree and weighted prediction algorithm. The developed prediction model is further compared with other models based on the same dataset. Results show that the developed model can obtain reasonable prediction results, except for samples with extremely short or long duration. Such a prediction model can help TIM teams estimate the incident duration and implement real-time incident management strategies.


Author(s):  
M. Jeyanthi ◽  
C. Velayutham

In Science and Technology Development BCI plays a vital role in the field of Research. Classification is a data mining technique used to predict group membership for data instances. Analyses of BCI data are challenging because feature extraction and classification of these data are more difficult as compared with those applied to raw data. In this paper, We extracted features using statistical Haralick features from the raw EEG data . Then the features are Normalized, Binning is used to improve the accuracy of the predictive models by reducing noise and eliminate some irrelevant attributes and then the classification is performed using different classification techniques such as Naïve Bayes, k-nearest neighbor classifier, SVM classifier using BCI dataset. Finally we propose the SVM classification algorithm for the BCI data set.


1997 ◽  
Vol 08 (03) ◽  
pp. 301-315 ◽  
Author(s):  
Marcel J. Nijman ◽  
Hilbert J. Kappen

A Radial Basis Boltzmann Machine (RBBM) is a specialized Boltzmann Machine architecture that combines feed-forward mapping with probability estimation in the input space, and for which very efficient learning rules exist. The hidden representation of the network displays symmetry breaking as a function of the noise in the dynamics. Thus, generalization can be studied as a function of the noise in the neuron dynamics instead of as a function of the number of hidden units. We show that the RBBM can be seen as an elegant alternative of k-nearest neighbor, leading to comparable performance without the need to store all data. We show that the RBBM has good classification performance compared to the MLP. The main advantage of the RBBM is that simultaneously with the input-output mapping, a model of the input space is obtained which can be used for learning with missing values. We derive learning rules for the case of incomplete data, and show that they perform better on incomplete data than the traditional learning rules on a 'repaired' data set.


Author(s):  
Prashansa Agrawal ◽  
Antony Franklin ◽  
Digvijay Pawar ◽  
Srijith PK

Author(s):  
Haozhe Cong ◽  
Cong Chen ◽  
Pei-Sung Lin ◽  
Guohui Zhang ◽  
John Milton ◽  
...  

Highway traffic incidents induce a significant loss of life, economy, and productivity through injuries and fatalities, extended travel time and delay, and excessive energy consumption and air pollution. Traffic emergency management during incident conditions is the core element of active traffic management, and it is of practical significance to accurately understand the duration time distribution for typical traffic incident types and the factors that influence incident duration. This study proposes a dual-learning Bayesian network (BN) model to estimate traffic incident duration and to examine the influence of heterogeneous factors on the length of duration based on expert knowledge of traffic incident management and highway incident data collected in Zhejiang Province, China. Fifteen variables related to three aspects of traffic incidents, including incident information, incident consequences, and rescue resources, were included in the analysis. The trained BN model achieves favorable performance in several areas, including classification accuracy, the receiver operating characteristic (ROC) curve, and the area under curve (AUC) value. A classification matrix, and significant variables and their heterogeneous influences are identified accordingly. The research findings from this study provide beneficial reference to the understanding of decision-making in traffic incident response and process, active traffic incident management, and intelligent transportation systems.


Sign in / Sign up

Export Citation Format

Share Document