Fusing Remote Sensing Images Using a Statistical Model
Enhance spectral fusion quality is the one of most significant targets in the field of remote sensing image fusion. In this paper, a statistical model based fusion method is proposed, which is the improved method for fusing remote sensing images on the basis of the framework of Principal Component Analysis(PCA) and wavelet decomposition-based image fusion. PCA is applied to the source images. In order to retain the entropy information of data, we select the principal component axes based on entropy contribution(ECA). The first entropy component and panchromatic image(PAN) are performed a multiresolution decompositon using wavelet transform. The low frequency subband fused by weighted aggregation approach and high frequency subband fused by statistical model. High resolution multispectral image is then obtained by an inverse wavelet and ECA transform. The experimental results demonstrate that the proposed method can retain the spectral information and spatial information in the fusion of PAN and multi-spectral image(MS).