Ultrasonic Transducer Design via APDL Optimization

2010 ◽  
Vol 34-35 ◽  
pp. 1076-1081
Author(s):  
Xiang Hui Zhang ◽  
Gui Hua Li

The design of ultrasonic transducer is used to achieve the desired value of terminal vibration amplitude. However, in many practical applications of ultrasonic transducer, the maximum vibration amplitude failed to achieve that value such as ultrasonic machine and bonding. For that matter, the design of ultrasonic transducer used APDL optimization method. In this paper the optimal design of a sandwich ultrasonic transducer is investigated. The design problem is formulated mathematically as a constrained single-objective optimization problem. The maximum vibration amplitude is considered as optimization objective. Design variables involve continuous variables and discrete variables. What is more, the behavior of ultrasonic transducer is modeled using ANSYS based on models of the transfer matrix method. In this paper, the optimized results are analyzed and the vibration amplitude is determined.

2013 ◽  
Vol 756-759 ◽  
pp. 3466-3470
Author(s):  
Xu Min Song ◽  
Qi Lin

The trajcetory plan problem of spece reandezvous mission was studied in this paper using nolinear optimization method. The optimization model was built based on the Hills equations. And by analysis property of the design variables, a transform was put forward , which eliminated the equation and nonlinear constraints as well as decreaseing the problem dimensions. The optimization problem was solved using Adaptive Simulated Annealing (ASA) method, and the rendezvous trajectory was designed.The method was validated by simulation results.


2013 ◽  
Vol 655-657 ◽  
pp. 435-444
Author(s):  
Dong Xia Niu ◽  
Xian Yi Meng ◽  
Ai Hua Zhu

In the case of multiple loading conditions, a moving blade adjustable axial flow fan structure parameters are optimized by ANSYS. It is to achieve greater efficiency and less noise for the optimization goal. For different conditions, establish efficiency, noise comprehensive objective function using weighted coefficient method. Select impeller diameter, the wheel hub ratio, leaf number, lift coefficient, speed as design variables, Choose blade installation Angle, the wheel hub place dynamic load coefficient, cascade consistency, allowable safety coefficient as optimization of the state variables. Design variables contain continuous variables and discrete variable. Through the optimization method, we get the optimal structure parameters finally. And at the same time get the corresponding optimal blade installation Angle,under different working conditions.


2019 ◽  
Vol 9 (20) ◽  
pp. 4267
Author(s):  
Chien Yang Huang ◽  
Tai Yan Kam

A new and effective elastic constants identification technique is presented to extract the elastic constants of a composite laminate subjected to uniaxial tensile testing. The proposed technique consists of a new multi-level optimization method that can solve different types of minimization problems, including the extraction of material constants of composite laminates from given strains. In the identification process, the optimization problem is solved by using a stochastic multi-start dynamic search minimization algorithm at the first level in order to obtain the statistics of the quasi-optimal design variables for a set of randomly generated starting points. The statistics of the quasi-optimal elastic constants obtained at this level are used to determine the reduced feasible region in order to formulate the second-level optimization problem. The second-level optimization problem is then solved using the particle swarm algorithm in order to obtain the statistics of the new quasi-optimal elastic constants. The iteration process between the first and second levels of optimization continues until the standard deviations of the quasi-optimal design variables at any level of optimization are less than the prescribed values. The proposed multi-level optimization method, as well as several existing global optimization algorithms, is used to solve a number of well-known mathematical minimization problems to verify the accuracy of the method. For the adopted numerical examples, it has been shown that the proposed method is more efficient and effective than the adopted global minimization algorithms to produce the exact solutions. The proposed method is then applied to identify four elastic constants of a [0°/±45°]s composite laminate using three strains in 0°, 45°, and 90° directions, respectively, of the composite laminate subjected to uniaxial testing. For comparison purposes, several existing global minimization techniques are also used to solve the elastic constants identification problem. Again, it has been shown that the proposed method is capable of producing more accurate results than the adopted available methods. Finally, experimental data are used to demonstrate the applications of the proposed method.


1983 ◽  
Vol 105 (1) ◽  
pp. 88-96 ◽  
Author(s):  
M. Yoshimura ◽  
T. Hamada ◽  
K. Yura ◽  
K. Hitomi

This paper proposes a design optimization method in which simplified structural models and standard mathematical programming methods are employed in order to optimize the dynamic characteristics of machine-tool structures in practical applications. This method is composed of three phases: (1) simplification, (2) optimization, and (3) realization. As design variables employed in this optimization are greatly reduced, machine-tool structures are optimized effectively in practice. With large design changes being conducted through this multiphase procedure, dynamic characteristics of machine tools can be greatly improved. This method is demonstrated on a structural model of a vertical lathe.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Yue Wu ◽  
Qingpeng Li ◽  
Qingjie Hu ◽  
Andrew Borgart

Firefly Algorithm (FA, for short) is inspired by the social behavior of fireflies and their phenomenon of bioluminescent communication. Based on the fundamentals of FA, two improved strategies are proposed to conduct size and topology optimization for trusses with discrete design variables. Firstly, development of structural topology optimization method and the basic principle of standard FA are introduced in detail. Then, in order to apply the algorithm to optimization problems with discrete variables, the initial positions of fireflies and the position updating formula are discretized. By embedding the random-weight and enhancing the attractiveness, the performance of this algorithm is improved, and thus an Improved Firefly Algorithm (IFA, for short) is proposed. Furthermore, using size variables which are capable of including topology variables and size and topology optimization for trusses with discrete variables is formulated based on the Ground Structure Approach. The essential techniques of variable elastic modulus technology and geometric construction analysis are applied in the structural analysis process. Subsequently, an optimization method for the size and topological design of trusses based on the IFA is introduced. Finally, two numerical examples are shown to verify the feasibility and efficiency of the proposed method by comparing with different deterministic methods.


2005 ◽  
Vol 127 (1) ◽  
pp. 49-57 ◽  
Author(s):  
Masataka Yoshimura ◽  
Shinji Nishiwaki ◽  
Kazuhiro Izui

Automotive body frames, which profoundly affect automotive performance such as crashworthiness, are generally formed using pressed metal sheets, and the assembled cross-sectional shapes govern the frame characteristics. This paper proposes a cross-sectional shape generating method for achieving the cross-sectional properties assigned by design engineers. The cross-sectional shape-generating problem for pressed metal sheets is formulated as a multiobjective optimization problem that involves a marriage of continuous variables, such as shape dimensions, and discrete design variables, such as types of material and their thicknesses. Genetic algorithms are applied to solve the optimization problem.


Author(s):  
Rami Mansour ◽  
Mårten Olsson

In reliability-based design optimization (RBDO), an optimal design which minimizes an objective function while satisfying a number of probabilistic constraints is found. As opposed to deterministic optimization, statistical uncertainties in design variables and design parameters have to be taken into account in the design process in order to achieve a reliable design. In the most widely used RBDO approaches, the First-Order Reliability Method (FORM) is used in the probability assessment. This involves locating the Most Probable Point (MPP) of failure, or the inverse MPP, either exactly or approximately. If exact methods are used, an optimization problem has to be solved, typically resulting in computationally expensive double loop or decoupled loop RBDO methods. On the other hand, locating the MPP approximately typically results in highly efficient single loop RBDO methods since the optimization problem is not necessary in the probability assessment. However, since all these methods are based on FORM, which in turn is based on a linearization of the deterministic constraints at the MPP, they may suffer inaccuracies associated with neglecting the nonlinearity of deterministic constraints. In a previous paper presented by the authors, the Response Surface Single Loop (RSSL) Reliability-based design optimization method was proposed. The RSSL-method takes into account the non-linearity of the deterministic constraints in the computation of the probability of failure and was therefore shown to have higher accuracy than existing RBDO methods. The RSSL-method was also shown to have high efficiency since it bypasses the concept of an MPP. In RSSL, the deterministic solution is first found by neglecting uncertainties in design variables and parameters. Thereafter quadratic response surface models are fitted to the deterministic constraints around the deterministic solution using a single set of design of experiments. The RBDO problem is thereafter solved in a single loop using a closed-form second order reliability method (SORM) which takes into account all elements of the Hessian of the quadratic constraints. In this paper, the RSSL method is used to solve the more challenging system RBDO problems where all constraints are replaced by one constraint on the system probability of failure. The probabilities of failure for the constraints are assumed independent of each other. In general, system reliability problems may be more challenging to solve since replacing all constraints by one constraint may strongly increase the non-linearity in the optimization problem. The extensively studied reliability-based design for vehicle crash-worthiness, where the provided deterministic constraints are general quadratic models describing the system in the whole region of interest, is used to demonstrate the capabilities of the RSSL method for problems with system reliability constraints.


Author(s):  
Haichao An ◽  
Shenyan Chen ◽  
Yanjie Liu ◽  
Hai Huang

This Case Study is to describe an application of a two-level approximation method in optimally determining the stacking sequences of a practical corrugated central cylinder. Being housed in the center of a practical satellite, this cylinder can support many of the structural components and functional devices in the satellite. For the purpose of reducing its mass meanwhile maintaining good mechanical properties, the stacking sequences of this cylinder are to be optimally designed under given constraints in this paper. To address this problem, an optimization model was first established by minimizing the structural mass based on initial lay-ups. With the given lay-ups for multi-parts of this cylinder, the existence of each ply was to be determined in terms of discrete variables. Meanwhile, the ply thicknesses were also treated as continuous variables. The two-level approximation method combined with a genetic algorithm previously proposed by the authors was adopted as the optimization method. According to the practical engineering considerations, multiple optimizations were conducted by starting from different initial lay-ups to search more possible optimization designs. After optimization, it was found that compared with the empirical designs, the mass of the main cylinder could be significantly decreased by obtaining some reasonable stacking sequences.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Daniele Peri

PurposeA recursive scheme for the ALIENOR method is proposed as a remedy for the difficulties induced by the method. A progressive focusing on the most promising region, in combination with a variation of the density of the alpha-dense curve, is proposed.Design/methodology/approachALIENOR method is aimed at reducing the space dimensions of an optimization problem by spanning it by using a single alpha-dense curve: the curvilinear abscissa along the curve becomes the only design parameter for any design space. As a counterpart, the transformation of the objective function in the projected space is much more difficult to tackle.FindingsA fine tuning of the procedure has been performed in order to identity the correct balance between the different elements of the procedure. The proposed approach has been tested by using a set of algebraic functions with up to 1,024 design variables, demonstrating the ability of the method in solving large scale optimization problem. Also an industrial application is presented.Originality/valueIn the knowledge of the author there is not a similar paper in the current literature.


Author(s):  
Tariq M. Arif ◽  
Zhiming Ji

Focused ultrasonic wave generation in bio-medical applications depends primarily on the transducer’s shape, piezoelectric material and the arrangements of transducer elements over the piston surface for specific power and pulse repetition frequency (PRF). For a given surface area, knowing the relationship between the transducer element’s geometry and the generated pressure will be useful for improving the transducer designs. In this study, patterns of pressure field variations with several selected transducer design variables (kerf, transducer element’s number and element’s width-height) have been investigated. These patterns indicate that there is an optimum shape and arrangement of transducer elements in a given area to achieve highest possible pressure at the focused zone. The number of design variables and their combinations can be used in this case is considerably large, and a Genetic Algorithm (GA) based evolutionary global search method is used to optimize design shape and the distribution of ultrasonic transducer element.


Sign in / Sign up

Export Citation Format

Share Document