Numerical Simulation and Analysis of Centrifuge Model Tests with Nonhomogeneous Materials in Geotechnical Engineering

2013 ◽  
Vol 353-356 ◽  
pp. 495-501
Author(s):  
Lie Xian Tang ◽  
Lian Jun Guo ◽  
Da Ning Zhang ◽  
Jian Ming Zheng

The primary methods are antetype observation and model tests which to check the actual engineering status in geotechnical engineering field. The antetype observation is the best direct and convictive method, but approach miscellaneous and spend hugely. The general model tests can not fulfil the same stress between model and antetype. Geotechnical centrifuge model test can not only minish the measure of model and fulfil the comparability condition, but also can found all kinds of non-symmetrical models and simulation all kinds of complicated engineering. So the geotechnical centrifuge model test is applied widely in the geotechnical engineering. This paper used the RFPA-Centrifuge and recured to the principle of geotechnical centrifuge model test, evaluated the safety of model only by increase the physical strength. Though the numerical calculating in nonhomogeneous models with different scales showed that stress, displacement and failure mode were accord with conform ratio of centrifuge model tests. Showed the advantage that the results of RFPA can be validated each other with results of physical tests. For some specifical complicated items in geotechnical engineering, make a good test model is not only very hard and have to spend much time, but also need expensive test equipment and much money for test materials. It is very good if we can use a method to conquer these shortages. So it is advisable that using the mechod which geotechnical centrifuge tests combine RFPA-Centrifuge numerical simulation analysis method.

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jiwen Zhang ◽  
Jie Cao ◽  
Bo Li ◽  
Kunye Zhou ◽  
Xilin Lü

With the rapid development of infrastructure construction in western China where hilly and gully areas are distributed, there are lots of large-scale filling engineering in recent years. In the area where collapsible loess is widely distributed, it is inevitable to use loess as filling material. Considering the collapsibility of loess, centrifuge model tests were conducted to study the settlement of loess fill in a valley after construction and subjected to rainfall infiltration. To provide a comparison, a centrifuge model test of loess filling body on a flat ground was conducted, and results showed that the settlement of loess fill during the construction stage is larger than the one at the postconstruction stage, and the unloading rebound deformation caused by decreasing gravity is about 15% of the deformation induced by increasing gravity. Two centrifuge model tests were conducted to study the settlement of the loess filling body in a valley; the varying characteristics of settlement and earth pressure with time at the postconstruction stage and subjected to rainfall infiltration were investigated. Differential settlement in the ground surface was observed at the postconstruction stage, and it was found to become very small under the rainfall infiltration condition. Comparison of the test results showed that insufficient compaction in the lower part of the filling body significantly increases the ground settlement at the postconstruction stage.


1986 ◽  
Vol 23 (3) ◽  
pp. 341-345 ◽  
Author(s):  
Robert J. Mitchell

The 6 m diameter, 30 g-tonne geotechnical centrifuge at Queen's University is described. Results from eight model tests, carried out on plain cemented sand samples representing mine backfills, are presented. These data show that the stable prototype backfill heights obtained from centrifuge tests exceed the failure heights predicted from unconfined compression testing by factors averaging about 1.8. This factor is explained by a combination of geometrical and behavioural effects. Still photographs of typical backfill failures in the centrifuge are included and these indicate that unacceptable ore dilution and recovery costs would be associated with the prototype failures in plain cemented tailings backfills. Key words: geotechnical centrifuge, mine backfill, model tests, cemented sand.


2012 ◽  
Vol 256-259 ◽  
pp. 372-376 ◽  
Author(s):  
Jing Bo Liu ◽  
Dong Dong Zhao ◽  
Wen Hui Wang ◽  
Xiang Qing Liu

Two geotechnical centrifuge model tests of a soil-structure system with different burial depths are performed to investigate the interaction between soil and structure. The tests are performed at 50 gravitational centrifuge accelerations and the input motion is Kobe wave. This paper focuses on the accelerations and displacements in the soil-structures system. The peak accelerations and displacements along the axis of the structure and along the vertical line 17cm away from the axis are presented. The acceleration and displacement response due to the interaction between soil and structure are studied.


2011 ◽  
Vol 105-107 ◽  
pp. 626-629 ◽  
Author(s):  
Yi Kai Fan ◽  
Xiang Qian Liang ◽  
Xin Huang ◽  
Xue Dong Zhang

7 geotechnical centrifuge model tests for buried explosion in dry sand were investigated by using 450 g-t geotechnical centrifuge apparatus. Blast wave effect on apparatus and propagation laws in dry sand were studied under the conditions of different explosive charges and different centrifuge acceleration levels. 11 accelerometers were buried around the explosives for recording the acceleration response in sand. Other 1 accelerometer was installed on the centrifuge arm to monitor blast wave effect on centrifuge apparatus. The results demonstrate that: The effect of blast wave on centrifuge apparatus can be ignored. The peak acceleration is a power increasing function of the acceleration level. An empirical relation of exponent can be found between the proportional peak acceleration and the proportional distance.


2021 ◽  
Vol 12 (1) ◽  
pp. 81
Author(s):  
Inyeop Chu ◽  
Sang-Kyun Woo ◽  
Sang Inn Woo ◽  
Joonyoung Kim ◽  
Kicheol Lee

Due to the lack of surface space, most structures are heading underground. The box culvert is underground infrastructure and serves to protect the buried structure from the underground environments, but it has a different characteristic from other structures in that the inner space is empty. Therefore, in this study, the vertical earth pressure which is the most significant effective stress acting on a box culvert was measured by conducting a geotechnical centrifuge model test. A box culvert was installed following the embankment installation method, and the vertical earth pressure acting on it was measured considering the cover depth, gravitational acceleration, and loading and unloading conditions. The soil pressure measured was greater than the existing theoretical value under high cover depth and the unloading condition, which is considered as the variability of many soils or the residual stress acting under the loading condition. Finally, a goodness-of-fit test was conducted as a part of variability analysis. The measured earth pressure was found to be considerably larger than the existing theoretical value, and the variability was large as well. This means the existing theoretical equation is under-designed, which should be reflected in future designs.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
S. Mohammad. Shoari Shoar ◽  
Ali A. Heshmati ◽  
Hossein Salehzadeh

To study prefailure deformations in nailed deep vertical excavations under various surcharges, four centrifuge tests were used to explain the lateral deformation of facing, the fracture mechanism of cement facing, and the settlement profile of the ground surface. The soil used in this research was Firoozkooh sand No. 161. Both surcharge applying and excavation were performed at 40 g acceleration. The depth of the excavation was 30 cm, the length of the nail varied from H/3 to 2H/3 (H: excavation depth), and the nails were installed horizontally. The nails were made of brass pipes and then sand coated. The results showed that the effect of surcharge on the lateral deformation of the facing as well as the fracture mechanism of facing is obvious. Also, it was seen that the ground settlement profile is two-line or three-line at the moment of facing fracture and is affected by surcharge.


Author(s):  
Y. S. Kim ◽  
Y. Cho ◽  
S. Bang ◽  
K. D. Jones

As part of a study on the determination of the suction pile vertical pullout loading capacity, five centrifuge model tests have been conducted on a model suction pile embedded in clay. Details of the centrifuge model test procedures and results are described. Variable in the centrifuge model tests includes the point of the mooring line attachment which was varied from the top to the bottom along the side of the model suction pile. The effect of this parameter on the suction pile vertical pullout capacity is described and discussed in detail. Test results indicate that the loading capacity increases, reaches its peak, and then decreases as the loading point moves downward.


Sign in / Sign up

Export Citation Format

Share Document