pullout capacity
Recently Published Documents


TOTAL DOCUMENTS

164
(FIVE YEARS 45)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hans Raj Vashishtha ◽  
Vishwas A. Sawant

AbstractThe granular pile anchor foundation is an effective and economical foundation system to counter the pullout forces exerted in case of transmission towers or foundations in expansive soil. The pullout tests were performed to study the behaviour of a single granular pile anchor in the clayey soil bed. Tests were conducted in a steel tank of 1 ×  1  ×  1 m size with the help of loading frame arrangement. The pullout load required for upward movement equal to 10% diameter was considered as the pullout capacity of the granular pile anchor. In the parametric study, length and diameter of the granular pile anchor were varied to examine their effect. Number of anchor plates was also varied in few tests. The pullout capacity enhanced with an increase in the diameter and length to diameter ratio. The effect of the length to diameter ratio was appreciable up to the value of 10. However, no significant effect was found in the cases of multiple anchor plates. A relationship is proposed to predict normalized pullout capacity.


2021 ◽  
Vol 237 ◽  
pp. 109643
Author(s):  
Vicent Ssenyondo ◽  
Seongho Hong ◽  
Taeho Bong ◽  
Sung-Ryul Kim

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Mingyuan Wang ◽  
Xiaoke Liu ◽  
Xinglei Cheng ◽  
Qun Lu ◽  
Jiaqing Lu ◽  
...  

The bearing capacity of suction caissons is the key to the design of offshore structures. A new type of cross-shaped low-skirted suction caisson is invented to effectively improve the bearing capacity, considering inevitable “soil plug” phenomenon. The behaviors of penetration and pullout for new low-skirted suction caisson are investigated by performing model tests. A new formula for calculating the penetration resistance is suggested based on the limit equilibrium theory and the test data, which can consider the change of the lateral area of the suction caisson during penetration. The behaviors of low-skirted suction caisson under inclined loading are analyzed by carrying out finite element simulation. The effects of loading angles and loading positions on the ultimate bearing capacity and failure mechanism of low-skirted suction caissons are discussed. The research results can provide a reference for the design of suction bucket foundation for offshore structures.


2021 ◽  
Vol 9 (8) ◽  
pp. 913
Author(s):  
Haixiao Liu ◽  
Yancheng Yang ◽  
Jinsong Peng

Anchors may exhibit various complicated behaviors in the seabed, especially for deepwater anchors including gravity installed anchors (GIAs) and drag embedment plate anchors (drag anchors), stimulating the development of an efficient analytical tool that applies to a variety of anchors. The present paper introduces a unified model for analyzing different anchor behaviors in both clay and sand, consisting of unified concepts, mechanical models, and analytical procedure. The kinematic behaviors of the anchors are classified uniformly as three types, i.e., diving, pulling out, and keying. By utilizing the least-force principle, various anchor properties, such as the ultimate pullout capacity (UPC), failure mode, movement direction, embedment loss, and kinematic trajectory, can all be determined by the combination and analysis of the three behaviors. Applications of the model are demonstrated summarily, by solving the UPC and the failure mode of anchor piles and suction anchors, the kinematic trajectory of drag anchors in a single soil layer or layered soils, the maximum embedment loss (MEL) of suction embedded plate anchors (SEPLAs) and OMNI-Max anchors, and the kinematic behavior of OMNI-Max anchors. Compared to existing theoretical methods, this unified model shows strong applicability and potentiality in solving a variety of behaviors and properties of different anchors under complicated seabed conditions.


Author(s):  
Peizhi Zhuang ◽  
Hongya Yue ◽  
Xiuguang Song ◽  
Renjuan Sun ◽  
Jianqing Wu ◽  
...  

2021 ◽  
Vol 234 ◽  
pp. 109229
Author(s):  
Naloan Coutinho Sampa ◽  
Fernando Schnaid ◽  
Marcelo Maia Rocha ◽  
Roberto Cudmani ◽  
Claudio dos Santos Amaral

Author(s):  
Aaron S. Bradshaw ◽  
Lindsay Cullen ◽  
Zachary Miller

This paper presents the results of a field load test program used to investigate group effects on the pullout capacity of single-helix ‘deep’ helical piles/anchors in sand. The high tensile capacity and silent installation of helical piles has given them serious consideration as an alternative to conventional deep foundations and anchors for offshore renewable energy structures. New offshore applications may consider the use of groups of helical piles to resist structural loads. Group interaction effects are known to occur in helical piles but there is a scarcity of field data on groups in sands under tensile loading. This study involved the installation and load testing of single-helix 152-mm diameter round shaft piles and pile groups embedded in sand to depths of 12 and 18 helix diameters below the ground surface. The study was designed to explore the effects of close pile spacing, group configuration (i.e. number of piles), and soil strength as interpreted from Cone Penetration Test (CPT) resistance. The results showed group efficiencies ranging from about 0.6 to 1.0 at a horizontal spacing of 2 to 3 times the helix diameter in sands with friction angles of about 39 to 44 degrees. The data from this study may also be useful for calibration and validation of numerical models for further analysis of helical pile group interactions.


Sign in / Sign up

Export Citation Format

Share Document