Terminal Area Energy Management Trajectory Planning for an Unpowered Reusable Launch Vehicle with Gliding Limitations
RLVs' gliding capability, determined by its maximum dive and maximum range, provided a significant restriction in TAEM trajectory planning in this paper. The maximum-dive trajectory was generated based on Eq.(3) for a constant maximum dynamic pressure. In the guidance, it was optimized to be Eq.(13) for the open-loop command of bank angle in HAC segment. The simplified closed-loop command of angle of attack contained errors of altitude and path angle except the controlled velocity. Energy propagating as Eq.(8) calculated the reference velocity for the speed brake to track. Finally, an illustrative example was given to confirm the efficiency of the trajectory planning algorithm and optimized command. The simulation results in Fig.2 and Fig.3 indicate the proposed trajectory planning algorithm and guidance method are useful for the gliding capability limited RLV's TAEM with initial deviations.