Research of the FEM Mesh Generation Based on Patran

2014 ◽  
Vol 525 ◽  
pp. 731-735 ◽  
Author(s):  
Qian Peng Han ◽  
Bo Peng

Finite element method(FEM) have been widely used in modern mechanical design,mesh generation is an important part of the finite element analysis,this article discussed the process of mesh generation through two practical cases and put forward some issues we should pay more attention to.

2013 ◽  
Vol 371 ◽  
pp. 478-482 ◽  
Author(s):  
Razvan Păcurar ◽  
Ancuţa Păcurar ◽  
Nicolae Bâlc ◽  
Anna Petrilak ◽  
Ladislav Morovič

Within this article, there are presented a series of researches that were developed for the first time in Romania, in the field of customized medical implants made by using the Selective Laser Melting (SLM) technology. Finite Element Method (FEM) has been successfully used in order to analyze the fatigue and to determine the durability of a customized medical implant that has been selected for the made analysis. The material characteristics taken into consideration within the Finite Element Analysis (FEA) that has been performed were the ones of two types of dedicated metallic powders which are commercially available (TiAl6Nb7 and TiAl6V4 material) and suitable for the SLM 250 HL equipment from the SLM Solutions GmbH Company from Lubeck, Germany. The Finite Element Analysis made in the case of these two types of SLM titanium alloyed materials, proved that the modified characteristics, such as the yield strength and hardness of the material are significantly influencing the durability of the medical implants made by SLM technology.


1998 ◽  
Vol 26 (2) ◽  
pp. 109-119 ◽  
Author(s):  
M. Koishi ◽  
K. Kabe ◽  
M. Shiratori

Abstract The finite element method has been used widely in tire engineering. Most tire simulations using the finite element method are static analyses, because tires are very complex nonlinear structures. Recently, transient phenomena have been studied with explicit finite element analysis codes. In this paper, the authors demonstrate the feasibility of tire cornering simulation using an explicit finite element code, PAM-SHOCK. First, we propose the cornering simulation using the explicit finite element analysis code. To demonstrate the efficiency of the proposed simulation, computed cornering forces for a 175SR14 tire are compared with experimental results from an MTS Flat-Trac Tire Test System. The computed cornering forces agree well with experimental results. After that, parametric studies are conducted by using the proposed simulation.


2019 ◽  
Vol 2019 ◽  
pp. 1-19
Author(s):  
Zhao Xu ◽  
Zezhi Rao ◽  
Vincent J. L. Gan ◽  
Youliang Ding ◽  
Chunfeng Wan ◽  
...  

Mesh generation plays an important role in determining the result quality of finite element modeling and structural analysis. Building information modeling provides the geometry and semantic information of a building, which can be utilized to support an efficient mesh generation. In this paper, a method based on BRep entity transformation is proposed to realize the finite element analysis using the geometric model in the IFC standard. The h-p version of the finite element analysis method can effectively deal with the refined expression of the model of bending complex components. By meshing the connection model, it is suggested to adopt the method of scanning to generate hexahedron, which improves the geometric adaptability of the mesh model and the quality and efficiency of mesh generation. Based on the extension and expression of IFC information, the effective finite element structure information is extracted and extended into the IFC standard mode. The information is analyzed, and finally the visualization of finite element analysis in the building model can be realized.


Author(s):  
Jiemin Liu ◽  
Guangtao Ma

A typical ground imitating tank is analyzed regarding it as the thin-walled structure composed of plates (skins) and beams (reinforcement) using finite element method (FEM). Through moving the location of reinforcements, make the skins close with the flanges of the reinforcements in order to imitate actually the connection of the skins and the reinforcements. The thickness of plates, the size and the geometry shape and the location of reinforcements are taken as parameters to be optimized. In calculation, not only consider effects of the oil-weight, the extra-pressure in tank and the dead weight of the tank on the stresses and displacements of the tank, but also analyze the effects of the inertia forces produced due to the rotation of the tank on the stresses and displacements. Displacement, stress and deformation distributions of the ground imitating tank under the three typical flying postures imitated are given.


2008 ◽  
Vol 606 ◽  
pp. 103-118 ◽  
Author(s):  
Jing Zhe Pan ◽  
Ruo Yu Huang

Predicting the sintering deformation of ceramic powder compacts is very important to manufactures of ceramic components. In theory the finite element method can be used to calculate the sintering deformation. In practice the method has not been used very often by the industry for a very simple reason – it is more expensive to obtain the material data required in a finite element analysis than it is to develop a product through trial and error. A finite element analysis of sintering deformation requires the shear and bulk viscosities of the powder compact. The viscosities are strong functions of temperature, density and grain-size, all of which change dramatically in the sintering process. There are two ways to establish the dependence of the viscosities on the microstructure: (a) by using a material model and (b) by fitting the experimental data. The materials models differ from each other widely and it can be difficult to know which one to use. On the other hand, obtaining fitting functions is very time consuming. To overcome this difficulty, Pan and his co-workers developed a reduced finite element method (Kiani et. al. J. Eur. Ceram. Soc., 2007, 27, 2377-2383; Huang and Pan, J. Eur. Ceram. Soc., available on line, 2008) which does not require the viscosities; rather the densification data (density as function of time) is used to predict sintering deformation. This paper provides an overview of the reduced method and a series of case studies.


1980 ◽  
Vol 47 (2) ◽  
pp. 377-382 ◽  
Author(s):  
K. Miya ◽  
T. Takagi ◽  
Y. Ando

Some corrections have been made hitherto to explain the great discrepancy between experimental and theoretical values of the magnetoelastic buckling field of a ferromagnetic beam plate. To solve this problem, the finite-element method was applied. A magnetic field and buckling equations of the ferromagnetic beam plate finite in size were solved numerically assuming that the magnetic torque is proportional to the rotation of the plate and by using a disturbed magnetic torque deduced by Moon. Numerical and experimental results agree well with each other within 25 percent.


2012 ◽  
Vol 271-272 ◽  
pp. 1291-1295
Author(s):  
Cai Jun Liu

By use of finite element method to analyze the strength of 6-wing synchronous rotor, and illustrate the change of parameters regarding strain, stress and displacement etc. so as to visually see whether the designed rotor will reach the design requirements; meanwhile, through structural analysis, to provide guidance for the further optimization of designing for 6-wing synchronous rotor.


2006 ◽  
Vol 326-328 ◽  
pp. 851-854 ◽  
Author(s):  
Yoon Hyuk Kim ◽  
Chang Hwan Byun ◽  
Taek Yul Oh

In this study, the change of the natural frequencies in mouse femurs with osteoporosis was investigated based on a vibration test and a finite element. Three groups of the femurs include the osteoporotic group, the treated group and the normal group. In the vibration test, the natural frequencies were measured by the mobility test. For the finite element analysis, the micro finite element model of the femur was reconstructed using the Micro-CT images and the Voxel mesh generation algorithm. From the results, the averaged natural frequencies in the osteoporotic group were the highest, followed by those in the treated group. The finite element models were validated within 15% errors by comparing the natural frequencies in the finite element analysis with those in the vibration test. The developed Micro-CT system, the Voxel mesh generation algorithm, the presented finite element analysis, and vibration test could be useful for the investigation of the structural change of the bone tissue, and the diagnosis and the treatment in the osteoporosis.


Sign in / Sign up

Export Citation Format

Share Document