Seismic Performance Evaluation of Steel Frame-Steel Plate Shear Wall Using Pushover and IDA
Based on the time-history analysis principle of bidirectional equivalent tension rod of steel shear wall in this paper, the theory of Incremental Dynamic Analysis (IDA) is used to investigate the real seismic behavior of steel frame-steel plate shear wall (SPSW) system under a large number of natural earthquake waves and artificial simulated earthquake waves with the gradually increased scale of seismic intensity in order to achieve the base shear-roof displacement (V-Δ) curve under each earthquake wave action. Based on the principle of unidirectional equivalent tension rod, the pushover analysis is also used to obtain the curve of base shear and roof displacement under two different loading modes of uniform distribution and inverted triangular distribution. Through the above two different methods of seismic behavior evaluation, the achieved conclusions are as follows: The most V-Δ envelope curves obtained by IDA analysis are between V-Δ envelope curves obtained by pushover analysis under these two loading modes of inverted triangular and uniform distribution. With the increase of structural storey, the effect of high order mode on seismic behavior is more and more obvious and the deviation of calculation results derived from pushover is bigger and bigger. As a result, pushover analysis is only applied to evaluate seismic performance of structure at the middle or low storey. For the pushover, the structural bearing capacity and initial stiffness is underestimated, but the structural deformation capacity is overestimated under inverted triangular loading mode, Whereas, it is the opposite situation under the uniform distribution.