Numerical Simulation of Modified Trailing Edge of Francis Turbine Stay Vane Based on Solid-Liquid Two-Phase Flow

2014 ◽  
Vol 700 ◽  
pp. 643-646
Author(s):  
Dong Wang ◽  
Si Qing Zhang ◽  
Yun Long Zhang

In order to investigate the silt abrasion of modified trailing edge of stay vane in Francis turbine, the numerical simulation of trailing edge with different geometries were carried out based on the solid-liquid two-phase flow by means of Computation Fluid Dynamics. The results show that low solid volume fraction distributes on the chamfered surface of trailing edge, and high solid volume fraction distributes on the end of oblique surface. The smaller the modified angle is, the larger the distribution area of high solid volume fraction is, which show the trailing edge with smaller oblique angle may suffer from silt abrasion. Therefore, in order to solve the vibration caused by Karman vortex the trailing edge has to be sharpened, the oblique angle of trailing edge should not be too small. At end of trailing edge needs to ensure a certain thickness, especially the trailing edge near the lower ring can be thicker, which can meet the anti-abrasion requirements.

2022 ◽  
Vol 10 (1) ◽  
pp. 57
Author(s):  
Lei Jiang ◽  
Ling Bai ◽  
Peng Xue ◽  
Guangjie Peng ◽  
Ling Zhou

The slurry pump is one of the most important pieces of equipment in mineral transportation and separation systems, and it has complex two-phase flow characteristics and wear mechanisms. By employing numerical and experimental methods, the solid–liquid two-phase flow characteristics and wear patterns were investigated in this study. A two-way coupling discrete phase model (DPM) method was used to predict the flow pattern and the wear location and shows good agreement with the experimental observations. The pump performance characteristics of numerical results under pure water conditions were consistent with the experimental results. The effects of particle parameters and operating conditions on the internal flow field and wear were compared and discussed. The results show that the wear degree increased with the increase in volume flow rate and solid volume fraction. With the increase in particle size, the wear range at the impeller inlet became significantly smaller, but the wear degree became obviously larger. This study provides a basis for reducing the wear and improving the hydraulic performance of slurry pumps.


2012 ◽  
Vol 625 ◽  
pp. 117-120
Author(s):  
Hui Xu ◽  
Xiao Hong Chen

The liquid phase experiment is finished ,and the relation curve of input- pressure and input-flow、output-flow、distributary rate are worked out.We are bout to calculate the production capacity and define the best distribution rate of the operation parameters.At the same time , the solid-liquid phase separating experiment are made too and we conclude the relation curve of input-pressure and consistency 、separating efficiency .Comparing with the numerical simulation ,the result is reasonable.


2009 ◽  
Vol 6 (1) ◽  
pp. 91-97 ◽  
Author(s):  
Guomei Li ◽  
Yueshe Wang ◽  
Renyang He ◽  
Xuewen Cao ◽  
Changzhi Lin ◽  
...  

Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2003
Author(s):  
Chaoshou Yan ◽  
Jianfei Liu ◽  
Shuihua Zheng ◽  
Bin Huang ◽  
Jiacheng Dai

In order to study the wear law of the centrifugal pump flowing surface under different wear-rings clearance, the McLaury wear model was used to conduct the full-passage numerical simulation of solid-liquid two-phase flow in a single-stage single-suction centrifugal pump. The reliability of the numerical calculation method is verified by comparing the experimental data and numerical simulation results. The clearance is 0.1, 0.15, 0.2, 0.3 and 0.5 mm, respectively. The results show that the wear of the centrifugal pump blades is mainly concentrated in the end part and the inlet part of the blade, and the wear of the pressure surface at the end of the suction surface and the front of the blade is more serious. As the clearance increases, the maximum wear value in the impeller increases first and then decreases, reaching a maximum at 0.15 mm. With the increase of the clearance, the wear degree and the wear rate of the volute wall surface first increase and then decrease, and reach the maximum at 0.2 mm. With the increase of the clearance and the concentration of the fluid medium, the wear at the clearance of the centrifugal pump is more serious, and the severe wear area exhibits a point-like circumferential distribution.


Author(s):  
Zheng yangyan ◽  
ye youjun ◽  
xie chuan yang ◽  
zheng kai ◽  
yu yanping

Sign in / Sign up

Export Citation Format

Share Document