Research on the Thermal Conductivity and Thermal Diffusivity of Magnesium Alloy

2014 ◽  
Vol 716-717 ◽  
pp. 84-87
Author(s):  
Rui Hua Guo ◽  
Jie Yu Zhang ◽  
Lin Min Wang ◽  
Yi Fan ◽  
Ying Jian Guo

Magnesium, as a kind of lightweight engineering material whose reserves is considerable abundant in the earth, is green environment-friendly materials for the 21st century. Magnesium alloys with its proportion of smaller than the advantages of high strength, good thermal conductivity and easy machining, is becoming a hot spot of attention and research. In this paper, the effects of magnesium alloys thermal conductivity and heat diffusivity were analyzed by consulting documents. Researches showed that all effects of the electron or phonon movement had affected thermal conductivity and thermal diffusivity of alloys. Furthermore, the thermal conductivity and thermal diffusivity of rare earth magnesium alloy were summarized by literature data, Researches showed that Add moderate amount of rare earth elements can improve the thermal conductivity and heat diffusivity of magnesium alloys.

2011 ◽  
Vol 312-315 ◽  
pp. 824-829 ◽  
Author(s):  
Tomasz Rzychoń ◽  
Andrzej Kiełbus

The microstructure and thermal diffusivity of as-cast AM60, AE63, AJ63 and AXJ620 alloys were investigated over the temperature range 20–300°C. The microstructure of as-cast AM60 magnesium alloy consists of dendrites of α-Mg solid solution and divorced eutectic containing “islands” of α-Mg and Mg17Al12 phase. In regions adjacent with divorced eutectic, the supersaturation aluminum solute in the α-Mg matrix is observed. The addition of rare earth, calcium and strontium caused the decrease of the volume fraction of Mg17Al12 compound and aluminum content in α-Mg solid solution. Moreover, the intermetallic compounds such as: Al11RE3, Al4Sr, Al3Mg13Sr, Al2Ca are observed in the interdendritic regions. The thermal diffusivity of AM60 magnesium alloy increases with increasing temperature up to 150°C, above this temperature the increase is less marked. The change in the slope of the temperature variation of the thermal diffusivity is caused by a precipitation of Mg17Al12 phase in the supersaturation of α-Mg areas neighboring the divorced eutectic α-Mg+Mg17Al12. The addition of rare earth, calcium and strontium caused the increase of the thermal diffusivity and thermal conductivity due to the decreasing of aluminum content in α-Mg matrix.


Alloy Digest ◽  
2015 ◽  
Vol 64 (9) ◽  

Abstract Elektron EQ21 is a casting high strength magnesium alloy developed as a heat treatable alloy with rare earth element additions. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive, shear, and bend strength as well as creep. It also includes information on high temperature performance and corrosion resistance as well as casting, forming, heat treating, machining, joining, and surface treatment. Filing Code: Mg-80. Producer or source: Magnesium Elektron Wrought Products, North America.


2016 ◽  
Vol 663 ◽  
pp. 321-331 ◽  
Author(s):  
Hucheng Pan ◽  
Yuping Ren ◽  
He Fu ◽  
Hong Zhao ◽  
Liqing Wang ◽  
...  

2015 ◽  
Vol 667 ◽  
pp. 303-307
Author(s):  
Hang Song Yang ◽  
Shao Ju Hao ◽  
Jun Jie Liang

For its light quality, good thermal conductivity, and excellent electricity shielding performance, Magnesium alloy has been used in industry, agricultural and so on, for rare earth elements can improve the mechanical performance of magnesium alloy, the study of powder metallurgy is influence by rare earth magnesium is few at present. so, in this paper, by mixing powder metallurgy method the Y89 element was added in Mg17Al12 magnesium alloy, the influence of Y89 on microstructure, hardness and compression performance of Mg17Al12 magnesium alloy was studied, The experimental results show that when amount of Y89’s addition, the mechanical performance is more then and when is 1.22%, its mechanical performance is best, hardness is 66.7 HV, compressive strength is 113.6 MPa,increased respectively by 19.7% and 29.3% compared the Mg17Al12 magnesium alloy substrate, and the grain refinement effect of Mg17Al12 magnesium alloy is the best at this time.


2020 ◽  
Vol 10 (01n02) ◽  
pp. 2060019
Author(s):  
Sidek Khasbulatov ◽  
Suleiman Kallaev ◽  
Haji Gadjiev ◽  
Zairbek Omarov ◽  
Abumuslim Bakmaev ◽  
...  

The paper presents the results of a comprehensive study of the thermophysical properties (thermal conductivity, thermal diffusivity, heat capacity) of high-temperature multiferroic BiFeO3 modified with rare-earth elements (REEs) (La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Lu). The regularities of the formation of the mentioned characteristics were established. The assumptions about the nature of the observed phenomena were suggested.


2010 ◽  
Vol 34-35 ◽  
pp. 1651-1655
Author(s):  
An Ru Wu ◽  
Li Jun Dong ◽  
Wei Guo Gao ◽  
Xiang Ling Zhou

The microstructure and mechanical properties of Mg-6.0%Zn-0.5%Zr (ZK60) and ZK60-2.0%Nd-1.0%Y alloys after extrusion, rolling and then T5 and T6 heat-treatment were investigated. The hardness and tensile strength at T5 and T6 condition were tested. The results show that the mechanical properties of ZK60--2.0%Nd-1.0%Y alloy are superior to that of ZK60 alloy. The hardness of the investigated alloy at T5 condition is higher than at T6. The strengthening of ZK60-2.0%Nd-1.0%Y alloy originates from the interaction of phase and dislocations. The precipitation order of ZK60-2.0%Nd-1.0%Y alloy is GP zone . The magnesium alloy contains rare earth elements with good casting performance, great potential for plastic deformation, high strength, excellent mechanical properties and many other advantages. The magnesium alloy oversaturation solid solution's decomposition process conforms to time the common alloy oversaturation solid solution decomposition order rule, often namely before separating out the equilibrium phase presents some transitional stage the structure, like the GP area, the transition are equal, but the different series magnesium alloy presents the different characteristic, therefore uses the heat treatment method also has big difference [1-5]. In this paper, we will analysis mechanical properties of aging process of testing and microstructure of Mg-6.0% Zn-0.5% Zr-2.0% Nd-1.0% Y alloy , do Research about strengthen the effect of melting and from the product of the relationship on different alloy aging process, and analysis contribution of rare earth elements Nd, Y to alloy strengthen.


2018 ◽  
Vol 149 ◽  
pp. 350-363 ◽  
Author(s):  
Hucheng Pan ◽  
Gaowu Qin ◽  
Yunmiao Huang ◽  
Yuping Ren ◽  
Xuechao Sha ◽  
...  

2010 ◽  
Vol 654-656 ◽  
pp. 580-585 ◽  
Author(s):  
Karl Ulrich Kainer ◽  
Joachim Wendt ◽  
Kerstin Hantzsche ◽  
Jan Bohlen ◽  
Sang Bong Yi ◽  
...  

Commercial magnesium alloys such as AZ31 exhibit strong crystallographic textures during massive deformation such as rolling. A randomisation of the texture, however, was found in alloys with rare earth (RE) elements in solid solution. This paper describes the development of microstructure and texture during rolling of the Al-free RE-containing wrought magnesium alloy ZEK100 during hot rolling. This alloy develops a strong texture with a pronounced component towards the transverse direction (TD) of the sheets. This TD component forms already after the first rolling pass, persists through all following passes and is further enhanced by subsequent heat treatment. These results are contrasted with results from a study on texture development of binary RE containing Mg-alloys, which show that the presence of RE elements alone is not responsible for the tilt of basal planes towards the TD. There is, however, a threshold concentration at which the texture begins to weaken.


Sign in / Sign up

Export Citation Format

Share Document