Finite Element Analysis of Corrosion Damaged Pipeline Using PZT-Based Ultrasonic Guided Wave Energy Method

2014 ◽  
Vol 1079-1080 ◽  
pp. 368-373
Author(s):  
Shi Yan ◽  
Xin Zi Yuan ◽  
Nai Zhi Zhao ◽  
Wei Wang ◽  
Yang Cheng

PZT-based ultrasonic guided wave has played an important role in health monitoring of pipeline structures. By using the PZT-based ultrasonic guided wave energy method and finite element software ABAQUS, the numerical simulation is performed to analyze various corrosion damaged pipeline structures, emphasizing on the damage identification, sensitivity analysis and longitudinal energy attenuation of the guided wave along various corrosion damaged pipelines. The preliminary analysis of the echo signals shows that the grass-like clutter wave belongs to echoes of the corrosion damage of the pipeline, and the wave energy spreads faster here. At the same time, by frequency spectrum analysis of the echo signal, the relationship between the reflection coefficient and the radial depth of defection is made which can be used to approximately evaluate geometrical dimension of the damage.

2011 ◽  
Vol 243-249 ◽  
pp. 3804-3807 ◽  
Author(s):  
Guang Biao Shao

Lateral spreading induced by earthquake liquefaction in soil layers is classified as a main cause of damage of pipeline structures. In this study, non-linear finite element method was applied for three-dimensional shell element analysis of continuous oil pipeline structures against transverse permanent ground deformation due to lateral spreading. The soil-structure interactions were simulated by soil-spring elements and the elastro-plastic of soil property was taken into accounted. Influential factors, such as width of lateral spreading, characteristics of pipe, on behavior of pipeline structures are examined by numerical analysis using finite element software ANSYS. According to the parameters analysis, some recommendations for safety design for oil pipeline across potential earthquake liquefaction areas are proposed.


2013 ◽  
Vol 690-693 ◽  
pp. 2327-2330
Author(s):  
Ming Bo Han ◽  
Li Fei Sun

By using finite element software, the paper establishes the main stand analysis model of the Ф140 pipe rolling mill and provides the model analysis of main stand in cases of full load. Verify the design of main stand fully comply with the technical requirements .In this paper, it provides the theoretical position of split casting and welding method using electric slag welding.


2014 ◽  
Vol 898 ◽  
pp. 399-402
Author(s):  
Heng Sun ◽  
Bai Shou Li

For traditional ordinary concrete wall column prone to thermal bridges, posted outside the insulation board short life than the life of the building,in the glazed hollow bead of recycled concrete foundation with good thermal conductivity test and compressive strength of the proposed ,use glazed hollow bead of recycled concrete exterior wall column instead of the traditional ordinary concrete wall column ,and using the finite element software ANSYS simulation analysis the uniaxial compression of glazed hollow bead of recycled concrete short columns and ordinary concrete short columns. Comparative analysis showed the same intensity level glazed hollow bead of recycled concrete ultimate compressive bearing capacity of an analog value the same as ordinary concrete short columns. To validate the ANSYS simulation of concrete short columns under uniaxial compression condition .


2011 ◽  
Vol 2-3 ◽  
pp. 140-143
Author(s):  
Qing Feng Yang ◽  
Peng Wang ◽  
Yu Hong Wang ◽  
Kai Zhang

The resonance frequency of the cymbal transducer ranges from 2kHz to 40kHz and its effective electromechanical coupling factor is around 20%. Finite element analysis has been performed to ascertain how the transducer’s makeup affect the transducer’s performance parameters. Two-dimensional axisymmetric model of the cymbal transducer was founded by finite element software-ANSYS, the application of the element type was discussed and the FEM models were built up under the far field condition. Eight groups of cymbal transducers of resonance frequency around 3kHz with different structural dimensions were designed. It was better for choosing the cymbal transducer of the 8mm cavity coping diameter, 20.8mm cavity bottom diameter and 26.8mm piezoelectric ceramic wafer diameter than others for reducing distortion degree of the signal and improving communication turnover in the researched cymbal transducers. It was appropriate for choosing the cymbal transducer of the 8mm cavity coping diameter, 22.4mm cavity bottom diameter and 26.4mm piezoelectric ceramic wafer diameter in order to improve the free-field voltage sensitivity and transmission efficient.


2009 ◽  
Vol 33 (2) ◽  
pp. 175-187 ◽  
Author(s):  
Mohamed Nizar Bettaieb ◽  
Mohamed Maatar ◽  
Chafik Karra

The purpose of this work is to determine the spur gear mesh stiffness and the stress state at the level of the tooth foot. This mesh stiffness is derived from the calculation of the normal tooth displacements: local displacement where the load is applied, tooth bending displacement and body displacement [15]. The contribution of this work consists in, basing on previous works, developing optimal finite elements model in time calculation and results precision. This model permits the calculation of time varying mesh stiffness and the evaluation of stress state at the tooth foot. For these reasons a specific Fortran program was developed. It permit firstly, to obtain the gear geometric parameters (base radii, outside diameter,…) and to generate the data base of the finite element meshing of a tooth or a gear. This program is interfaced with the COSMOS/M finite element software to predict the stress and strain state and calculate the mesh stiffness of a gear system. It is noted that the mesh stiffness is periodic and its period is equal to the mesh period.


2018 ◽  
Vol 29 (16) ◽  
pp. 3188-3198 ◽  
Author(s):  
Wissem Elkhal Letaief ◽  
Aroua Fathallah ◽  
Tarek Hassine ◽  
Fehmi Gamaoun

Thanks to its greater flexibility and biocompatibility with human tissue, superelastic NiTi alloys have taken an important part in the market of orthodontic wires. However, wire fractures and superelasticity losses are notified after a few months from being fixed in the teeth. This behavior is due to the hydrogen presence in the oral cavity, which brittles the NiTi arch wire. In this article, a diffusion-mechanical coupled model is presented while considering the hydrogen influences on the NiTi superelasticity. The model is integrated in ABAQUS finite element software via a UMAT subroutine. Additionally, a finite element model of a deflected orthodontic NiTi wire within three teeth brackets is simulated in the presence of hydrogen. The numerical results demonstrate that the force applied to the tooth drops with respect to the increase in the hydrogen amount. This behavior is attributed to the expansion of the NiTi structure after absorbing hydrogen. In addition, it is shown that hydrogen induces a loss of superelasticity. Hence, it attenuates the role of the orthodontic wire on the correction tooth malposition.


Author(s):  
H. Teng ◽  
D. W. Beardsmore ◽  
J. K. Sharples ◽  
P. J. Budden

A finite element analysis has been performed to investigate the effects of warm prestressing of a pre-cracked PTS-D (Pressurized Thermal Shock Disk) specimen, for comparison with the experimental work conducted by the Belgium SCK-CEN organisation under the European NESC VII project. The specimen was loaded to a maximum loading at −50 °C, unloaded at the same temperature, cooled down to −150 °C, and then re-loaded to fracture at −150 °C. This is a loading cycle known as a LUCF cycle. The temperature-dependant tensile stress-strain data was used in the model and the finite element software ABAQUS was used in the analysis. The finite element results were used to derive the apparent fracture toughness by three different methods: (1) Chell’s displacement superposition method; (2) the local stress matching method; and (3) Wallin’s empirical formula. The apparent fracture toughness values were derived at the deepest point of the semi-elliptical crack for a 5% un-prestressed fracture toughness of 43.96 MPam1/2 at −150 °C. The detailed results were presented in the paper.


2013 ◽  
Vol 831 ◽  
pp. 137-140
Author(s):  
Kang Min Lee ◽  
Liu Yi Chen ◽  
Rui Li ◽  
Keun Yeong Oh ◽  
Young Soo Chun

Coupling beams resist lateral loads efficiently is well known in coupled wall systems. In many cases, geometric limits result in coupling beams that are deep in relation to their clear span. Coupling beams with small depth-to-span ratio shall be reinforced with two intersecting groups of diagonally placed bars symmetrical along the mid-span. It's always hard to optimize construction projects. This paper used the finite element software (Abaqus) to analysis and simulate the nonlinear behavior of a new reinforcement called head bar and compared the results to the current standards.


Sign in / Sign up

Export Citation Format

Share Document