Influence of Machining Parameters on Temperature when Drilling Carbon Fiber Reinforced Polymer (CFRP) Using Coated Diamond Drills

2015 ◽  
Vol 1115 ◽  
pp. 74-79
Author(s):  
Mohamed Konneh ◽  
Mohammad Iqbal ◽  
Hanfi bin Ani ◽  
Mohd Zulhari bin Yayah

As the tendency towards weight reduction and low fuel consumption seems to drive the increased use of advanced exotic materials such as composites, titaniums and Inconels in the aerospace industry, the need for machining remains in aircraft industries as a post-processing operation. In the present work, the investigation of the influence of machining parameters on surface temperature when drilling CFRP using 4 mm-diameter 2-fluted carbide end-mill coated with diamond is presented. The temperature was examined on Thermal Gun Quicktemp 860-T1 sensor and analysed based on analysis of variance (ANOVA) of Central Composite Design of experiments and a first order mathematical model has been developed to predict temperature values for range of machining parameters used in the study. The relationship between the machining variables and output variables is established. It was found that the lowest temperature (32.2°C) was generated at rotational speed, 537 rpm and feed rate, 180 mm/min and at the highest temperature (39.1°C) generated at rotational speed, 4400 rpm and feed rate, 270 mm/min.

2015 ◽  
Vol 1115 ◽  
pp. 80-85
Author(s):  
Mohamed Konneh ◽  
Kassim A. Abdullah ◽  
Sudin Izman ◽  
Mohd Amirudin Jusoh

: The investigation of the influence of machining parameters on delamination at exit of drilled holes after drilling into CFRP composite using 4 mm-diameter 2-fluted carbide drills coated diamond is present in this paper. The delamination at tool exit was analyzed in terms of delamination factor on the basis of analysis of variance (ANOVA) of Central Composite Design (CCD) of experiments. It is found that spindle speed is the most influential factor for the drilling of CFRP within the range of cutting parameters examined. The lowest delamination factor (1.003) was generated at rotational speed, 5063 rpm and feed rate, 180 mm/min; and the highest delamination factor (1.093) generated at rotational speed, 537 rpm and feed rate, 180 mm/min. A mathematical model has been predicted for the delamination at tool entry. The relationship between the machining variables and output variables is also established.


2015 ◽  
Vol 1115 ◽  
pp. 64-69
Author(s):  
Mohamed Konneh ◽  
Muataz Hazza Faizi Al Hazza ◽  
Atiah Abdullah Sidek ◽  
Ruhaki Huda Samsul Bahri

This paper presents the investigation of the influence of machining parameters on delamination at entry of drilled holes after drilling into CFRP composite using 4 mm-diameter 2-fluted carbide drills coated diamond. The delamination at tool entry was analyzed in terms of delamination factor on the basis of analysis of variance (ANOVA) of Central Composite Design (CCD) of experiments. It is found that spindle speed is the most influential factor for the drilling of CFRP within the range of cutting parameters examined. The lowest delamination factor (1.006) was generated at rotational speed, 4400 rpm and feed rate, 270 mm/min; and the highest delamination factor (1.123) generated at rotational speed, 537 rpm and feed rate, 180 mm/min. A mathematical model has been predicted for the delamination at tool entry. The relationship between the machining variables and output variables is also established.


2014 ◽  
Vol 800-801 ◽  
pp. 61-65 ◽  
Author(s):  
Kun Xian Qiu ◽  
Cheng Dong Wang ◽  
Qing Long An ◽  
Ming Chen

The new developed carbon fiber reinforced polymer laminates are widely used in main structural components of big commercial aircrafts. Generally drilling is the final operations in manufacturing structure, which is the most important operation during assembly. Defects such as burrs and delamination always appear in the process of drilling, which makes it hard to control the drilling quality. In this research, the drilling defects of T800 CFRP laminates are evaluated by using a brad point drill and a multifacet drill in terms of drilling forces, burr defect and delamination detection. The results show that the spindle speed is the most significant factor affecting the delamination defect followed by the feed rate. High speed drilling and low feed rate could improve the surface quality and reduce the delamination. The multifacet drill showed excellent drilling performance than the brad point drill and generated smaller defects.


2012 ◽  
Vol 232 ◽  
pp. 106-110 ◽  
Author(s):  
S.A. Syed Azuan ◽  
J.M. Juraidi ◽  
Wan Mansor Wan Muhamad

Delamination is recognized as one of the most critical defects that can result from the machining composites. Delamination has been a major form of failure in drilled composite materials due to the composites lack of strength in the drilling direction, which results in poor surface finish, reduction in bearing strength, reduction in structural integrity and ultimately poor performance of the composite. Currently, most of the major research reported delamination address specific of machining fiber glass, graphite fiber or carbon fiber reinforced polymer composites. It is not yet clear how different drilling parameters affect the machinability of natural fiber reinforced polymer composite materials and quality of drilled holes. This paper report the investigation in drilling holes on natural fibre reinforced polyester composites and evaluate its hole quality by measuring delamination. Three different type of drill: twist 118o drill, brad drill and end mill were used. Drilling process is carried out for three spindle speed (1500 rpm, 2000 rpm and 2500 rpm) and three feed rate (0.1 mm/rev, 0.15 mm/rev and 0.2 mm/rev). Brad drill experienced higher delamination values compared to twist and end mill. Increasing of feed rate and spindle speed also caused a relevant increase in the delamination values. It is found that Rice husk reinforced polyester composites delamination value is lower when compared to the glass fiber reinforced polymer.


2021 ◽  
Vol 10 (1) ◽  
pp. 201-209
Author(s):  
Omer Kalaf ◽  
Tauqir Nasir ◽  
Mohammed Asmael ◽  
Babak Safaei ◽  
Qasim Zeeshan ◽  
...  

Abstract In this study, similar aluminum alloys AA5052 with additional carbon fiber-reinforced polymer composite (CFRP) interlayer were selected to investigate the effect of welding parameters (rotational speed and dwell time) on the mechanical properties, joint efficiency, and microstructure of friction stir spot weld joint. The maximum tensile shear load was 1779.6 N with joint efficiency of 14.6% obtained at rotational speed of 2,000 rpm and 2 s dwell time, which is 39.5% higher than the value at low rotational speed 850 rpm and 2 s dwell time. Meanwhile, the maximum microhardness 58 HV was attained in the keyhole region at rotational speed of 2,000 rpm and dwell time of 5 s, which is 22.4% higher compared to low rotational speed. The SEM-EDS results reveal the presence of intermetallic compounds (Al–Mg–C), which enhance the intermetallic bonding between elements.


2017 ◽  
Vol 46 (1) ◽  
pp. 21-30 ◽  
Author(s):  
Shunmugesh K. ◽  
Panneerselvam Kavan

Purpose This paper aims to attempt to use grey relational analysis (GRA) coupled with Taguchi technique for the optimization of machining parameters (cutting speed, feed rate and drill bit type) with multiple performance characteristics of delamination factor, surface roughness and circularity in drilling of carbon fiber-reinforced polymer (CFRP) along the fiber direction. Design/methodology/approach Machining trials involved drilling of 6-mm diameter holes on 8-mm-thick CFRP plates was performed according to L27 (313) Taguchi’s orthogonal array technique using the drill material of high speed steel (HSS), Titanium Nitride (TiN) and Titanium Aluminium Nitride (TiAlN). Analysis of variance has been used find the effect, percentage contribution and significance of the process parameters, namely, cutting speed, feed rate and drill bit type. Findings The Taguchi technique is combined with the GRA to find the optimum process parameter which minimizes the delamination factor, surface roughness and circularity within the range of parameters investigated. The effective implementation of the hybrid approach helps to produce quality and defect free holes. Originality/value Experimental investigation on delamination factor, surface roughness and circularity in drilling of CFRP along the fiber direction using Taguchi-GRA was seldom reported.


2019 ◽  
Vol 7 (1) ◽  
pp. 30-34
Author(s):  
A. Ajwad ◽  
U. Ilyas ◽  
N. Khadim ◽  
Abdullah ◽  
M.U. Rashid ◽  
...  

Carbon fiber reinforced polymer (CFRP) strips are widely used all over the globe as a repair and strengthening material for concrete elements. This paper looks at comparison of numerous methods to rehabilitate concrete beams with the use of CFRP sheet strips. This research work consists of 4 under-reinforced, properly cured RCC beams under two point loading test. One beam was loaded till failure, which was considered the control beam for comparison. Other 3 beams were load till the appearance of initial crack, which normally occurred at third-quarters of failure load and then repaired with different ratios and design of CFRP sheet strips. Afterwards, the repaired beams were loaded again till failure and the results were compared with control beam. Deflections and ultimate load were noted for all concrete beams. It was found out the use of CFRP sheet strips did increase the maximum load bearing capacity of cracked beams, although their behavior was more brittle as compared with control beam.


Sign in / Sign up

Export Citation Format

Share Document