Influence of Silanized-Silica and Carbon Black on the Cure and Mechanical Properties of Natural Rubber/Recycled Chloroprene Rubber (NR/rCR) Blends

2016 ◽  
Vol 1133 ◽  
pp. 191-195
Author(s):  
Siti Zuliana Salleh ◽  
Hanafi Ismail ◽  
Zulkifli Ahmad

The loadings effect of carbon black and silanized-silica filled 75/25 phr/phr of natural rubber/recycled chloroprene rubber (NR/rCR) blends were compared with the unfilled NR/rCR blends. Different filler loading between in the range of 10- 40 phr was used. The rubber blends were prepared by using a laboratory two-roll mill and rheometric characteristics were studied using the Monsanto moving die rheometer (MDR 2000) at 150 °C. The addition of CB and silanized-silica showed different trend in scorch and cure time but showed similar trend in torques. The incorporation of both fillers caused higher tensile strength than that unfilled rubber blends. By comparison, the silanized-silica filled NR/rCR blends showed higher tensile strength than CB filled NR/rCR blends. Morphological characterization as observed from SEM justified these results.

2014 ◽  
Vol 979 ◽  
pp. 155-158 ◽  
Author(s):  
Apaipan Rattanapan ◽  
Jitrakha Paksamut ◽  
Pornsri Pakeyangkoon ◽  
Surakit Tuampoemsab

This work studied possibilities of using waste silicon carbide (SiC) particles from abrasive industry as alternative filler in natural rubber (NR) compounds. The rubber was prepared by using natural rubber grade STR 5L and waste silicon carbide loading of 0, 10, 20, 30 and 40 phr. Firstly, the rubber were compounded by using two roll mill and then using Oscillating Disc Rheometer for studying cure time at one hundred and fifty degree Celsius. Then, shear viscosity and extrudate swell of the compounded natural rubber were characterized by using capillary rheometer at 100°C. The result showed that the apparent shear viscosity increased slightly with increasing waste silicon carbide loading and the percentage of extrudate swell was found to be a decreasing function of the filler loading. Then, test tensile by using the prepared samples for studying tensile modulus, tensile strength and elongation at break. The result showed that tensile modulus and tensile strength increased with increasing waste silicon carbide. On the other hand, the elongation at break of the filled natural rubber decreased with increasing waste silicon carbide. Finally, bring the sample to test hardness by using shore A. Results indicated that waste silicon carbide direct variation with the indicator of hardness.


2013 ◽  
Vol 33 (9) ◽  
pp. 803-811 ◽  
Author(s):  
Siti Z. Salleh ◽  
Hanafi Ismail ◽  
Zulkifli Ahmad

Abstract The effects of various ratios of virgin chloroprene rubber (vCR) and recycled chloroprene rubber (rCR) with a constant content of carbon black (CB) on the properties of natural rubber/chloroprene rubber NR/CR blends were studied. The minimum torque (ML), maximum torque (MH), scorch time, and cure time increased with the addition of both CRs and the effects of rCR were more pronounced than vCR on these properties. The tensile strength and fatigue life of the NR/vCR blends increased with an addition of vCR up to 25 phr and then decreased with a higher vCR. However, NR/rCR blends reflected otherwise for both properties. The elongation at break and swelling percentage of NR/CR blends decreased with the addition of both vCR and rCR.


2011 ◽  
Vol 471-472 ◽  
pp. 957-962 ◽  
Author(s):  
Siti Zuliana Salleh ◽  
Hanafi Ismail ◽  
Zulkifli Ahmad

In this research, natural rubber (NR) with halloysite nanotubes(HNTs)/carbon black (CB) hybrid filler at various filler loading was investigated where the total filler loading used in each compound were 40 phr. The curing characteristics, fatigue life and morphological properties of HNTs/CB/NR nanocomposites were studied. Laboratory two-roll mill was used for mixing process. The results revealed that vulcanizates containing more HNTs in hybrid filler exhibit longer scorch time (ts2) and cure time (t90) for curing characteristics and higher in fatigue life compared to vulcanizates with 40 phr of CB. The images from scanning electron microscope (SEM) confirmed that replacement of carbon black with halloysite nanotubes improved the fatigue life by showing more tearing surface on vulcanizates.


2011 ◽  
Vol 471-472 ◽  
pp. 845-850 ◽  
Author(s):  
Komethi Muniandy ◽  
Hanafi Ismail ◽  
Nadras Othman

Rattan for its potential as a new type of filler was investigated in natural rubber (NR) compounds. Natural rubber (NR) compounds were prepared by the incorporation of rattan at different loadings into a natural rubber matrix with a laboratory size two roll mill. The effect of rattan loading as filler on curing characteristics, tensile properties, morphological properties using scanning electron microscopy (SEM) and rubber–filler interaction of rattan filled natural rubber compound were studied in the filler loading range of 0 to 30 phr. The results indicate that the scorch time (ts2) and cure time (t90) shorten with increasing filler loading, whereas the maximum torque (MH) showed an increasing trend. As the filler loading increases, the tensile strength and elongation at break decreases whilst tensile modulus; stress at 100 % elongation and stress at 300 % elongation increased. The rubber filler interactions of the rubber compound decreased with increasing filler loading. SEM studies indicate that the increasing rattan loading weakens the rubber-rattan interactions.


2019 ◽  
Vol 1 (1) ◽  
pp. 12-21 ◽  
Author(s):  
Indra Surya ◽  
Nabil Hayeemasae

The reinforcement of natural rubber (NR) and epoxidized natural rubbers (ENRs) with silica or carbon black (CB) by using a semi-efficient sulfur accelerated vulcanization system has been carried out. It was found that silica caused a longer in cure time compared to CB and due to the dissimilarity of their surface chemistry, it was also found that silica and CB caused the difference in reinforcement effect to those rubbers. Silica caused in filled-vulcanizates of those rubbers with a higher modulus and lower tensile strength compared to their unfilled ones. On the other hand, CB caused enhancements in both modulus and tensile to those rubbers. The investigation on reinforcing efficiencies of those fillers on the rubbers found that the higher reinforcing efficiency of CB was attributed to its better degree of filler dispersion when compared to silica.


2011 ◽  
Vol 264-265 ◽  
pp. 646-651 ◽  
Author(s):  
Wittawat Wongsorat ◽  
Nitinat Suppakarn ◽  
Kasama Jarukumjorn

Natural rubber (NR) was reinforced with three types of filler: carbon black, calcium carbonate, and sisal fiber. NR composites were prepared on a two-roll mill. Filler content was 20 phr. Mechanical properties and cure characteristics of NR composites were studied. All NR composites had higher maximum torque than NR. NR filled with carbon black showed the highest maximum torque. However, scorch time and cure time of the NR composites were not much affected by filler types. In addition, influence of fiber treatment (alkalization) on mechanical properties and cure characteristics of sisal fiber-NR composites was investigated. Alkali treated sisal fiber-NR composite exhibited higher tensile properties and hardness than untreated sisal fiber- NR composite due to improved adhesion between the fiber and NR matrix. Moreover, alkali treated sisal fiber-NR composite had superior specific modulus and strength than NR composites filled with carbon black and calcium carbonate.


2016 ◽  
Vol 705 ◽  
pp. 40-44
Author(s):  
Chaiwute Vudjung

Natural rubber (NR) containing the nata de coco fiber or Bacterial cellulose (BC) was prepared by co-coagulation of BC and concentrated NR latex with CaCl2 and compounded by two roll mill. The effect of BC content was the important factor in this study. It was that found tensile strength and elongation at break of NR filled BC (NR/BC) decreased with increasing BC content. The addition of BC into NR affect Mooney viscosity of NR/BC masterbatch, with increasing BC content, scorch time and cure time of their compound decreased.


2017 ◽  
Vol 751 ◽  
pp. 332-336 ◽  
Author(s):  
Sarawut Prasertsri ◽  
Sansanee Srichan

This research aimed to investigate the possibility of pyrolytic carbon black (PCB) used as filler in natural rubber (NR) and its effect on Mooney viscosity, cure characteristics and mechanical properties compared with commercial carbon black (N774). The results revealed that Mooney viscosity, stiffness and heat build-up tended to increase with increasing both PCB and N774 loading, whereas elongation at break decreased. However, the maximum tensile and tear strengths appeared at the optimum filler loading for both PCB and N774. At similar filler content, PCB-filled NR compounds have higher cure time, heat build-up and thermal resistance. Nevertheless, they exhibited lower Mooney viscosity and mechanical properties compared to N774-filled NR. Finally, it can be concluded that PCB could be utilized as filler in NR compound to act as semi-reinforcing filler and was classified as a filler to reduce costs.


2020 ◽  
Vol 11 (1) ◽  
pp. 43-51
Author(s):  
Wisdom Okechukwu Egbujuo ◽  
Placid Ikechukwu Anyanwu ◽  
Henry Chinedu Obasi

AbstractNatural rubber (NR) vulcanizates were prepared from natural rubber and chitin using a two-roll mill. The chitin was extracted from crab shell waste obtained from a local market in Oron, Akwa Ibom State, Nigeria using the chemical extraction method. The effects of the chitin at different contents (0–40 phr) on the mechanical properties of the NR/Chitin vulcanizates with carbon black as reference filler have been investigated. The tensile strength of the chitin filled natural rubber (NCH), and the carbon black filled natural rubber (NCB) vulcanizates were found to increase with an increase in filler content to reach optimum at 30 phr after which it decreased. The hardness, impact and abrasion resistance properties of the NCH and NCB vulcanizates increased as filler content increases. The tensile strength and abrasion resistance of the vulcanizates containing blends of varying percentages of carbon black to chitin (CBCH) increased as more carbon black (CB) is introduced while the hardness and impact strength increased with increase in chitin content. However, carbon black filled vulcanizates showed better property enhancement than the chitin filler.


Author(s):  
Akinlabi Oyetunji ◽  
Isiaka O Bakare ◽  
Reginald Umunakwe ◽  
Adetola O Adeyemo

This work investigates the effects of addition of 63 µm uncarbonized particulate cow bone as fillers in vulcanized natural rubber on the tensile properties, hardness and abrasion resistance of the composites. Cow bones were procured from an abattoir, cleaned, crushed, pulverized, ball milled and sieved to obtain the particles that passed through the 63 µm mesh size. Natural rubber composites materials were prepared varying the filler loading as 5, 10, 15 and 20 pphr respectively. The compounded rubber samples were cured in a hot press using compression moulding technique. The control sample was produced using 20 pphr of carbon black. The cured rubber samples were conditioned at room temperature for two weeks before they were characterized. The tensile strength and elastic modulus of the samples filled with cow bone increased with filler loading up to 15 pphr before they started decreasing. Carbon black reinforced sample possessed higher tensile strength, modulus and hardness than the samples filled with uncarbonized particulate cow bone. The hardness for all samples maintained an increasing trend with increase in the filler loadings. Particulate cow bone reinforced natural rubber offered higher elongation than carbon black reinforced samples. At 10, 15 and 20 pphr, cow bone reinforced composites exhibited higher abrasion resistance than carbon black filled sample. The optimal filler loading of uncarbonized particulate cow bone reinforced natural rubber was 15 pphr.  Cow bone reinforced natural rubber can find applications in areas where moderate strength, hardness, elongation and wear resistance are required such as in protective footwear, bouncing balls and cases of children toys.Keywords— carbon black, cow bone, fillers, natural rubber, composites.


Sign in / Sign up

Export Citation Format

Share Document