Curing Characteristics and Mechanical Properties of Rattan Filled Natural Rubber Compounds

2011 ◽  
Vol 471-472 ◽  
pp. 845-850 ◽  
Author(s):  
Komethi Muniandy ◽  
Hanafi Ismail ◽  
Nadras Othman

Rattan for its potential as a new type of filler was investigated in natural rubber (NR) compounds. Natural rubber (NR) compounds were prepared by the incorporation of rattan at different loadings into a natural rubber matrix with a laboratory size two roll mill. The effect of rattan loading as filler on curing characteristics, tensile properties, morphological properties using scanning electron microscopy (SEM) and rubber–filler interaction of rattan filled natural rubber compound were studied in the filler loading range of 0 to 30 phr. The results indicate that the scorch time (ts2) and cure time (t90) shorten with increasing filler loading, whereas the maximum torque (MH) showed an increasing trend. As the filler loading increases, the tensile strength and elongation at break decreases whilst tensile modulus; stress at 100 % elongation and stress at 300 % elongation increased. The rubber filler interactions of the rubber compound decreased with increasing filler loading. SEM studies indicate that the increasing rattan loading weakens the rubber-rattan interactions.

2011 ◽  
Vol 471-472 ◽  
pp. 957-962 ◽  
Author(s):  
Siti Zuliana Salleh ◽  
Hanafi Ismail ◽  
Zulkifli Ahmad

In this research, natural rubber (NR) with halloysite nanotubes(HNTs)/carbon black (CB) hybrid filler at various filler loading was investigated where the total filler loading used in each compound were 40 phr. The curing characteristics, fatigue life and morphological properties of HNTs/CB/NR nanocomposites were studied. Laboratory two-roll mill was used for mixing process. The results revealed that vulcanizates containing more HNTs in hybrid filler exhibit longer scorch time (ts2) and cure time (t90) for curing characteristics and higher in fatigue life compared to vulcanizates with 40 phr of CB. The images from scanning electron microscope (SEM) confirmed that replacement of carbon black with halloysite nanotubes improved the fatigue life by showing more tearing surface on vulcanizates.


2014 ◽  
Vol 979 ◽  
pp. 155-158 ◽  
Author(s):  
Apaipan Rattanapan ◽  
Jitrakha Paksamut ◽  
Pornsri Pakeyangkoon ◽  
Surakit Tuampoemsab

This work studied possibilities of using waste silicon carbide (SiC) particles from abrasive industry as alternative filler in natural rubber (NR) compounds. The rubber was prepared by using natural rubber grade STR 5L and waste silicon carbide loading of 0, 10, 20, 30 and 40 phr. Firstly, the rubber were compounded by using two roll mill and then using Oscillating Disc Rheometer for studying cure time at one hundred and fifty degree Celsius. Then, shear viscosity and extrudate swell of the compounded natural rubber were characterized by using capillary rheometer at 100°C. The result showed that the apparent shear viscosity increased slightly with increasing waste silicon carbide loading and the percentage of extrudate swell was found to be a decreasing function of the filler loading. Then, test tensile by using the prepared samples for studying tensile modulus, tensile strength and elongation at break. The result showed that tensile modulus and tensile strength increased with increasing waste silicon carbide. On the other hand, the elongation at break of the filled natural rubber decreased with increasing waste silicon carbide. Finally, bring the sample to test hardness by using shore A. Results indicated that waste silicon carbide direct variation with the indicator of hardness.


2011 ◽  
Vol 471-472 ◽  
pp. 851-856 ◽  
Author(s):  
S.M. Shaari ◽  
Hanafi Ismail ◽  
Nadras Othman

The study of chitosan loading onto epoxidized natural rubber compounds were prepared by incorporation of chitosan into epoxidised natural rubber matrix using a two-roll mill. The effects of chitosan loading on the curing characteristics, tensile properties and morphology of the compounds were investigated. Results indicated that slight changes in curing time (t90), and scorch time (tS2) of the compounds with the incorporation of chitosan. An increment is observed in the maximum torque, tensile modulus and durometer hardness of the compounds while tensile strength and elongation at break declines with chitosan loading.


2013 ◽  
Vol 858 ◽  
pp. 199-204
Author(s):  
Hoang T.B. Diep ◽  
Hanafi Ismail ◽  
A. Rashid Azura ◽  
Ng. Van Tu ◽  
Tsutomu Takeichi

Wollastonite filled natural rubber (NR) compounds were prepared using a laboratory two-roll mill. The filler was loaded into NR at different loading, i.e., 0, 10, 20, 30 and 40 part per hundred of rubber (phr). The effect of wollastonite on curing characteristic, tensile and morphology properties has been studied. Results indicated that the cure time (t90), scorch time (t2), tensile strength and elongation at break of the NR compounds decrease with increasing wollastonite loading but the maximum torque, tensile modulus M100 (stress at 100% elongation), M300 (stress at 100% elongation) increase with increasing wollastonite loading. The fracture surface morphology of the NR compounds was investigated with a scanning electron microscope (SEM). More filler detachment from NR surface was observed with increasing wollastonite loading.


2013 ◽  
Vol 844 ◽  
pp. 239-242 ◽  
Author(s):  
Supaporn Ieadsang ◽  
Anoma Thitithammawong ◽  
Charoen Nakason ◽  
Azizon Kaesaman

Modified epoxidized palm oil (pA-m-EPO) was prepared by a reaction of epoxidized palm oil (EPO) with n-phenyl-p-phenylenediamine. Chemical structure of the pA-m-EPO was characterized by using FT-IR spectrophotometer. Influence of the pA-m-EPO on bound rubber content, total mixing energy, Mooney viscosity and curing characteristics of carbon black filled natural rubber compound together with mechanical and morphological properties of carbon black filled natural rubber vulcanizates was later studied. Results showed that the NR compound and vulcanizate with using the pA-m-EPO gave inferior properties than those of using the aromatic oil. However, they provided better properties than those of the treated distillate aromatic extract (TDAE) excepting filler dispersion. Furthermore, the pA-m-EPO can be claimed as non-carcinogenic processing oil with low polycyclic aromatic hydrocarbons.


2014 ◽  
Vol 3 (2) ◽  
pp. 1-4
Author(s):  
Indra Surya ◽  
Siswarni MZ

By using a semi-efficient vulcanization system, the effect of Epoxidized Natural Rubber (ENR) as a compatibilizer in silica-filled Styrene Butadiene Rubber (SBR) compound was carried out. The ENR was incorporated into the silica-filled SBR compound at 5.0 and 10.0 phr. An investigation was carried out to examine the effect of ENR on cure characteristics and tensile properties of the silica-filled SBR compound. It was found that ENR gave enhanced cure rate to the silica-filled SBR compound. ENR also exhibited a higher torque difference, tensile modulus, and tensile strength up to 10.0 phr. The study of rubber - filler interaction proved that the addition of ENR to the silica-filled SBR system improved the rubber - filler interaction.


2015 ◽  
Vol 815 ◽  
pp. 44-48
Author(s):  
M.H. Fatin ◽  
N.Z. Noriman ◽  
Kamarudin Husin ◽  
M.Z. Salihin ◽  
N.R. Munirah ◽  
...  

The potential of activated carbon as a filler in rubber compound has been reviewed .Cure characteristics and physical properties ofImperataCylindricaactivated carbon filled natural rubber of Standard Malaysian Rubber (SMR L) were studied. SMR L was used as the elastomer and the composition of filler loading were varied from 0-50 parts per hundred rubber (phr). A semi-efficient vulcanization system was used throughout the study. The cure characteristics of the rubber compound was determined by using rheometer. The samples of hardness and resilience were measured by durometer shore A and Wallace Dunlop Tripsometer. Cure characteristics showed that cure time, t90and scorch time,t2increased as increased filler loading which indicate poor interaction between rubber and filler which slow down the vulcanization time. Minimum torque,MLand maximum torque,MHincreased as increased filler loading due to the low processability of the SMR L compounds. Crosslink density and hardness exhibit increment as increased filler loading due to increase rigidity of the SMR L compounds. The resilience will decrease correspondingly as increased in rigidity of the compounds.


2012 ◽  
Vol 164 ◽  
pp. 142-145 ◽  
Author(s):  
Qian Zhang ◽  
Yu De Zhang ◽  
Yan Wang

Nanoomposites consisting of natural rubber (NR) reinforced with the modified kaolin were fabricated. The effect of modified kaolin loading on the mechanical properties of the vulcanizates was examined by varying its incorporation (20–50 phr). The NR-based nanocomposites were characterized using the transmission electron microscopy (TEM), Instron tensile machine and thermal analyser. These filled NR composites exhibit outstanding mechanical properties and much higher thermal stability compared to the pure NR. The hardness and tensile properties increased with increasing filler loading and an optimum of tensile strength was achieved at 50 phr of modified kaolin. The morphological studies by TEM revealed that kaolinite layers were finely dispersed into the natural rubber matrix and orientationally arranged in parallel


2016 ◽  
Vol 1133 ◽  
pp. 191-195
Author(s):  
Siti Zuliana Salleh ◽  
Hanafi Ismail ◽  
Zulkifli Ahmad

The loadings effect of carbon black and silanized-silica filled 75/25 phr/phr of natural rubber/recycled chloroprene rubber (NR/rCR) blends were compared with the unfilled NR/rCR blends. Different filler loading between in the range of 10- 40 phr was used. The rubber blends were prepared by using a laboratory two-roll mill and rheometric characteristics were studied using the Monsanto moving die rheometer (MDR 2000) at 150 °C. The addition of CB and silanized-silica showed different trend in scorch and cure time but showed similar trend in torques. The incorporation of both fillers caused higher tensile strength than that unfilled rubber blends. By comparison, the silanized-silica filled NR/rCR blends showed higher tensile strength than CB filled NR/rCR blends. Morphological characterization as observed from SEM justified these results.


2010 ◽  
Vol 123-125 ◽  
pp. 1171-1174 ◽  
Author(s):  
Wittawat Wongsorat ◽  
Nitinat Suppakarn ◽  
Kasama Jarukumjorn

Sisal fiber/natural rubber (NR) composites were prepared by the incorporation of sisal fiber into NR at various content (10, 20, 30 phr) using a two-roll mill. Natural rubber grafted with maleic anhydride (NR-g-MA) prepared in house was used to improve interfacial adhesion between sisal fiber and NR matrix. NR-g-MA contents were varied. Mechanical properties, morphologies, and cure characteristics of the composites were studied. Maximum torque, modulus at 100% strain (M100), modulus at 300% strain (M300), and hardness of the composites increased with increasing fiber content while scorch time, cure time, tensile strength, and elongation at break decreased. The addition of NR-g-MA into the composites gave a positive impact on M100, M300, tensile strength, and hardness. Moreover, increasing NR-g-MA content resulted in increased scorch time, cure time, maximum torque, M100, M300, tensile strength, and hardness of the composites. SEM micrographs of the composites revealed that the addition of NR-g-MA into the composites improved the interfacial interaction between sisal fiber and NR matrix. In addition, the compatibilized NR composites exhibited higher specific tensile strength and modulus than the carbon black/NR composites.


Sign in / Sign up

Export Citation Format

Share Document