Adsorption Analysis of Cr(VI) by Fly Ash Composite Material in Aqueous Medium

2010 ◽  
Vol 142 ◽  
pp. 143-147
Author(s):  
Hong Qin Xue ◽  
Zhao Qian Jing ◽  
Zheng Wang

The adsorption technique using fly ash composite material has been applied for the removal of Cr(VI) from aqueous samples. Batch experiments have been carried out for the adsorption of Cr(VI) onto fly ash composite material. The effects of various process parameters, namely, pH, adsorbent dosage, initial Cr(VI) concentration and contact time has been studied in batch systems. Maximum metal removal ratio was observed at pH 5.0~5.5, and the sorption reaction was an endothermic process. The results revealed that the hexavalent chromium is considerably adsorbed on this adsorbent and it could be an economical method for the removal of hexavalent chromium from aqueous systems.

Author(s):  
Amarnath P.C & Shashikala K. J. Praveen Kumar D. G., Kalleshappa C.M.,

In the present study we explored the adsorptive characteristics of 4-nitroaniline from synthetic aqueous solution onto bagasse fly ash (BFA). Batch experiments were carried out to determine the influence of parameters like initial pH (pH0), adsorbent dose (m), contact time (t) and initial concentration (C0) on the removal of 4-nitroaniline. The maximum removal of 4-nitroaniline was determined to be 98% at lower concentrations (50 mg/L) and 41% at higher concentrations (300 mg/L), using a BFA dosage of 10 g/L at 303K. Kinetic study of 4-nitroaniline removal by BFA was well represented by pseudo second-order kinetic model. The 4-nitroaniline desorption from 4-nitroaniline loaded BFA shows that only 27% and 36% of 4-nitroaniline could be recovered using ethyl alcohol and acetone respectively.


2020 ◽  
Vol 82 (9) ◽  
pp. 1858-1867
Author(s):  
Huannan Wang ◽  
Dandan Yan ◽  
Huan Zeng ◽  
Jiajie He

Abstract A biochar material made from corncobs was tested for its capability in BTEX adsorption/interception in stormwater filtration systems. Batch experiments were conducted to examine the adsorption kinetics, adsorption isotherms, and adsorption thermodynamics of BTEX onto this biochar. The feasibility of applying this biochar in stormwater filtration was studied by dynamic transport experiments and model simulations. The result showed that this biochar can adsorb BTEX and the adsorption is a thermodynamically spontaneous, and endothermic process. The BTEX adsorption kinetic experiment and adsorption retarded BTEX transport experiment indicated that the BTEX adsorption kinetics can be changed by the driving force between the BTEX concentrations and the active adsorption site as well as the contact time between BTEX and the biochar. In terms of applying this biochar in stormwater filtration, the Monte Carlo uncertainty analysis indicated that the BTEX interception is sensitive to the hydraulic conductivity of the biochar filter and the adsorption kinetics of the biochar material. Although this corncob-made biochar demonstrated effective pollutant adsorption capability, the biochar adsorption capability should be utilized to retain the pollutant long enough for biodegradation to take effect for ultimate pollutant attenuation.


2021 ◽  
Vol 411 ◽  
pp. 93-105
Author(s):  
Rafeah Wahi ◽  
Showkat Ahmad Bhawani ◽  
Zainab Ngaini ◽  
Nur Farhana Yusop ◽  
Nur Hanani Hasana

The use of agricultural by-products has been widely studied to develop effective and inexpensive adsorbent for heavy metal removal. In this study, sago (M.sagu) fly ash (FA) was chemically modified to afford an operational adsorbent for Pb (II) elimination from water. Chemical modification was carried out via acid-base treatment using NaOH and HCl. The chemically modified fly ash (MFA) was characterized via proximate, surface morphology, and functional groups' surface area analyses. The effects of adsorption parameters, namely, Pb (II) initial concentration, sorbent dosage and contact time on the eradication of Pb (II) by MFA was analyzed in batch experiments with Langmuir and Freundlich isotherms. Optimization of Pb (II) removal by MFA was studied via response surface methodology (RSM) approach. Results revealed that chemical modification has successfully enhanced the adsorptive properties of MFA (BET surface area: 231.4 m2/g, fixed carbon: 55.83%). MFA exhibits better Pb (II) removal efficiency (90.8%) compared to FA (63.6%) at the following adsorption condition: Pb (II) initial concentration (5 ppm), contact time (30 min) and agitation speed (150 rpm). The adsorption of Pb (II) by FA and MFA fitted well with Freundlich isotherm (R2>0.9). RSM study suggested that the optimum Pb (II) removal was 99.4% at the following conditions: Pb (II) initial concentration (20 ppm), contact time (2 h) and sorbent dosage (0.6 g/50 mL). The results concluded the potential optimum operational condition for Pb (II) removal from aqueous environment by MFA as a low cost adsorbent, at larger scale.


2011 ◽  
Vol 324 ◽  
pp. 497-500 ◽  
Author(s):  
Zoubeida Sfaksi ◽  
Nourreddine Azzouz ◽  
Ahmed Abdelwahab

The biosorption by cork powder is considered as a new method for heavy metal removal from industrial waste waters such as chromium tanning factories. The aim of this study is to evaluate the efficiency extent of this method using a cork powder as biosorbent for hexavalent chromium Cr(VI). The Fourier Transform Infrared spectroscopy (FTIR) analysis permits to distinguish the type of functional groups likely to participate in metal binding. A linear form of BET isotherms for all the three used temperatures (25, 35 and 45°C) and a pseudo-second-order Lagergren equation of adsorption kinetics are obtained. Other experimental results highlight the meaningful influence of parameters such as contact time, pH and concentrations of the solution, on chromium adsorption rate that reach a 97% value under definite conditions particularly a pH of 2-3 values.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Waheed Ali Khoso ◽  
Noor Haleem ◽  
Muhammad Anwar Baig ◽  
Yousuf Jamal

AbstractThe heavy metals, such as Cr(VI), Pb(II) and Cd(II), in aqueous solutions are toxic even at trace levels and have caused adverse health impacts on human beings. Hence the removal of these heavy metals from the aqueous environment is important to protect biodiversity, hydrosphere ecosystems, and human beings. In this study, magnetic Nickel-Ferrite Nanoparticles (NFNs) were synthesized by co-precipitation method and characterized using X-Ray Diffraction (XRD), Energy Dispersive Spectroscopy (EDS) and Field Emission Scanning Electronic Microscopy (FE-SEM) techniques in order to confirm the crystalline structure, composition and morphology of the NFN’s, these were then used as adsorbent for the removal of Cr(VI), Pb(II) and Cd(II) from wastewater. The adsorption parameters under study were pH, dose and contact time. The values for optimum removal through batch-adsorption were investigated at different parameters (pH 3–7, dose: 10, 20, 30, 40 and 50 mg and contact time: 30, 60, 90, and 120 min). Removal efficiencies of Cr(VI), Pb(II) and Cd(II) were obtained 89%, 79% and 87% respectively under optimal conditions. It was found that the kinetics followed the pseudo second order model for the removal of heavy metals using Nickel ferrite nanoparticles.


2021 ◽  
Vol 5 (6) ◽  
pp. 151
Author(s):  
Mustapha El Kanzaoui ◽  
Chouaib Ennawaoui ◽  
Saleh Eladaoui ◽  
Abdelowahed Hajjaji ◽  
Abdellah Guenbour ◽  
...  

Given the amount of industrial waste produced and collected in the world today, a recycling and recovery process is needed. The study carried out on this subject focuses on the valorization of one of these industrial wastes, namely the fly ash produced by an ultra-supercritical coal power plant. This paper describes the use and recovery of fly ash as a high percentage reinforcement for the development of a new high-performance composite material for use in various fields. The raw material, fly ash, comes from the staged combustion of coal, which occurs in the furnace of an ultra-supercritical boiler of a coal-fired power plant. Mechanical compression, thermal conductivity, and erosion tests are used to study the mechanical, thermal, and erosion behavior of this new composite material. The mineralogical and textural analyses of samples were characterized using Scanning Electron Microscopy (SEM). SEM confirmed the formation of a new composite by a polymerization reaction. The results obtained are very remarkable, with a high Young’s modulus and a criterion of insulation, which approves the presence of a potential to be exploited in the different fields of materials. In conclusion, the composite material presented in this study has great potential for building material and could represent interesting candidates for the smart city.


2015 ◽  
Vol 3 (3) ◽  
pp. 1669-1677 ◽  
Author(s):  
Mohammad S. Al-Harahsheh ◽  
Kamel Al Zboon ◽  
Leema Al-Makhadmeh ◽  
Muhannad Hararah ◽  
Mehaysen Mahasneh

Sign in / Sign up

Export Citation Format

Share Document