Optimal Location of Auto-Control Valves in Water Distribution Networks

2011 ◽  
Vol 183-185 ◽  
pp. 868-872
Author(s):  
Xia Li ◽  
Guo Jin Li ◽  
Xin Hua Zhao ◽  
Li Zhang

In recent years, the SCADA (supervisory control and data acquisition) systems are applied widely for water distribution networks, where the auto-control valves are used to reduce the excessive water pressure of each node for further leakage control. In this paper, first the existing optimal location models of valves are briefly introduced, whose shortcomings are proposed. Then a new method based on direct hydraulic analysis theory of the mass conservation of nodes and the energy conservation of loops is available for optimal location of auto-control valves. Finally taking the water network of Tianjin Port Free Trade Zone as an example, valve location problem is illustrated, which shows the feasibility of the method.

2017 ◽  
Vol 18 (1) ◽  
pp. 318-332 ◽  
Author(s):  
Omid Bozorg-Haddad ◽  
Milad Latifi ◽  
Atiyeh Bozorgi ◽  
Mohammad-Mehdi Rajabi ◽  
Seyed-Taghi Naeeni ◽  
...  

Abstract Optimizing the design and operation of urban water distribution networks (WDNs) is a complex, nonlinear problem. The optimization of WDNs can be performed for the pumping schedule, the location and elevation of reservoirs, the physical characteristics of pipes, and the placement of pressure-reducing valves, among other objectives. This study applies the anarchic society optimization (ASO) algorithm to find the optimal location and elevation of auxiliary tanks in urban water networks. The ASO is validated with mathematical benchmark functions, and is implemented to determine the location and elevation of auxiliary tanks in two urban water networks. The fuzzy reliability index for urban water network ranges between 74 and 79%, which is close to the global optima. The ASO exhibited better performance optimizing the reliability of WDNs than the genetic algorithm.


Water ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2321
Author(s):  
Federica Bruno ◽  
Mauro De Marchis ◽  
Barbara Milici ◽  
Domenico Saccone ◽  
Fabrizio Traina

Efficient management of water distribution networks (WDNs) is currently a focal point, especially in countries where water scarcity conditions are more and more amplified by frequent drought periods. In these cases, in fact, pressure becomes the fundamental variable in managing the WDNs. Similarly, WDNs are often obsolete and affected by several points of water losses. Leakages are mainly affected by pressure; in fact, water utilities usually apply the technique of pressure management to reduce physical losses. It is clear how pressure plays a fundamental role in the management of WDNs and in water safety. Even though the technologies are quite mature, these systems are often expensive, especially if a capillarity monitoring system is required; thus, water managers apply the measurement of the flow rate and pressure at very few points. Today, the implementation of the Internet of things (IoT) can be considered a key strategy for monitoring water distribution systems. Once the sensors are installed, in fact, it is relatively easy to build a communication system able to collect and send data from the network. In the proposed study, a smart pressure monitoring system was developed using low-cost hardware and open-source software. The prototype system is composed of an Arduino microcontroller, a printed circuit board, and eight pressure transducers. The efficiency of the proposed tool was compared with a SCADA monitoring system. To investigate on the efficiency of the proposed measurement system, an experimental campaign was carried out at the Environmental Hydraulic Laboratory of the University of Enna (Italy), and hydrostatic as well as hydrodynamic tests were performed. The results showed the ability of the proposed pressure monitor tool to have control of the water pressure in a WDN with a simple, scalable, and economic system. The proposed system can be easily implemented in a real WDN by water utilities, thus improving the knowledge of pressure and increasing the efficiency level of the WDN management.


2020 ◽  
Vol 2 (1) ◽  
pp. 47
Author(s):  
Giovanni Francesco Santonastaso ◽  
Armando Di Nardo ◽  
Michele Di Natale ◽  
Velitchko Tzatchkov

Water network partitioning (WNP) represents an efficient strategy to improve management of water distribution networks, reduce water losses and monitor water quality. It consists in physically dividing of a water distribution network (WDN) into districted metered areas (DMAs) through the placement of flow meters and isolation valves on boundary pipes between DMAs. In this paper, a novel methodology for designing DMAs is proposed that provides districts with quite similar node elevations and minimizes the number of boundary pipes in order to simplify pressure management and reduce the number of devices to place into the network.


Sign in / Sign up

Export Citation Format

Share Document