Temperature and Strain Rate Dependence of Deformation Microstructures of AZ31 Magnesium Alloy under Uniaxial Tension

2011 ◽  
Vol 217-218 ◽  
pp. 93-96 ◽  
Author(s):  
Wan Peng Deng ◽  
Zhan Feng Gao ◽  
Xiao Wu Li

The tensile deformation microstructures of an extruded AZ31 Mg alloy were examined at temperatures ranging from room temperature to 250°C over a strain rate range from 10-4 s-1 to 10-2 s-1. It is found that the strain rate has an enhanced effect on the tensile flow behavior of AZ31 Mg alloy with increasing temperature, which is closely related to the changes of deformation microstructures. The tensile deformation of AZ31 Mg alloy is mainly accommodated by twinning and slipping at room temperature and 100°C, and the amount of deformation twins reduces with increasing temperature and decreasing strain rate. However, discontinuous dynamic recrystallization (DRX) occurs primarily at grain boundaries, and nearly no deformation twins form, as the temperature is as high as 250°C. With decreasing strain rate, more significant DRX takes place with an increasing DRX grain size. The tensile deformation of AZ31 Mg alloy at 250°C is thus primarily controlled by slipping and DRX.

2010 ◽  
Vol 667-669 ◽  
pp. 707-712 ◽  
Author(s):  
Xiao Yan Liu ◽  
Xi Cheng Zhao ◽  
Xi Rong Yang

Ultrafine-grained (UFG) commercially pure (CP) Ti with a grain size of about 200 nm was produced by ECAP up to 8 passes using route BC at room temperature. For ECAP processing a proper die set was designed and constructed with an internal channel angle Φ of 120° and an outer arc of curvature Ψ of 20°. Strain rate sensitivity of UFG CP-Ti and CG CP-Ti were investigated by compression tests in the temperature range of 298~673K and strain rate range of 10-4~100s-1 using Gleeble simulator machine. Evolution of the microstructure during compression testing was observed using optical microscopy (OM) and transmission electron microscopy (TEM). Strain rate sensitivity value m of the UFG CP-Ti has been measured and is found to increase with increasing temperature and decreasing strain rate, and is enhanced compared to that of CG CP-Ti. Result of the deformation activation energy determination of UFG CP-Ti indicates that the deformation mechanism in UFG CP-Ti is correlated to the grain boundaries.


2012 ◽  
Vol 578 ◽  
pp. 202-205
Author(s):  
Guo Qing Lin

The hot deformation behavior of Zr-4 alloy was studied in the temperature range 650-900°C and strain rate range 0.005-50s-1 using processing maps. The processing maps revealed three domains: the first occurs in the temperature range 780-820°C and strain rate range 0.005-0.05s-1, and has a peak efficiency of 45% at 790°C and 0.005s-1; the mechanism is the dynamic recrystallization. The second occurs in the temperature range greater than 900°C and strain rate range 0.05-0.8s-1, and has a peak efficiency of 40% at 900°C and 0.5s-1, which are the domains of dynamic recovery. In addition, the instability zones of flow behavior can also be recognized by the maps in the temperature range 650-780°C and strain rate range 0.01-0.1s-1, which should be strictly avoided in the processing of the material. Zr-4 alloy is the material for pressure tube applications in nuclear reactors and has better strength and a lower rate of hydrogen uptake compared to other materials under similar service conditions.


2016 ◽  
Vol 35 (1) ◽  
pp. 29-35 ◽  
Author(s):  
Yongnan Chen ◽  
Chuang Luo ◽  
Jiao Wang ◽  
Yongqing Zhao ◽  
Hong Chen

AbstractThe semi-solid deformation behavior of Ti-7Cu titanium alloy in the temperature range of 1,223 K to 1,473 K and strain rate range of 0.005 to 5 s−1 have been investigated by hot compressive testing. The results show that the maximum and stability stresses decrease with decreasing strain rate and increasing temperature. A yielding occurred to the alloy at a higher strain rate under all experimental temperatures. The flow behaviors were described by a constitutive equation based on the Arrhenius equations and the deformation activate energies is also calculated. By comparing with microstructure of the solid deformation, the liquid in semi-solid deformation can overcome the restriction of the movement of solid particle, which reduced the dislocation pile-up during deformation and caused low deformation resistant stress.


2016 ◽  
Vol 35 (3) ◽  
pp. 297-307 ◽  
Author(s):  
Jun Cai ◽  
Kuaishe Wang ◽  
Yingying Han

AbstractTrue stress and true strain values obtained from isothermal compression tests over a wide temperature range from 1,073 to 1,323 K and a strain rate range from 0.001 to 1 s–1 were employed to establish the constitutive equations based on Johnson Cook, modified Zerilli–Armstrong (ZA) and strain-compensated Arrhenius-type models, respectively, to predict the high-temperature flow behavior of Ti–6Al–4V alloy in α + β phase. Furthermore, a comparative study has been made on the capability of the three models to represent the elevated temperature flow behavior of Ti–6Al–4V alloy. Suitability of the three models was evaluated by comparing both the correlation coefficient R and the average absolute relative error (AARE). The results showed that the Johnson Cook model is inadequate to provide good description of flow behavior of Ti–6Al–4V alloy in α + β phase domain, while the predicted values of modified ZA model and the strain-compensated Arrhenius-type model could agree well with the experimental values except under some deformation conditions. Meanwhile, the modified ZA model could track the deformation behavior more accurately than other model throughout the entire temperature and strain rate range.


2012 ◽  
Vol 706-709 ◽  
pp. 2187-2192 ◽  
Author(s):  
Takashi Mizuguchi ◽  
Rintaro Ueji ◽  
Hayato Miyagawa ◽  
Yasuhiro Tanaka ◽  
Kazunari Shinagawa

The fracture behavior transition due to the change of strain rate in 5%Si magnetic steel with dislocation microstructures was studied. The Si steel was multi-passed rolled at 800°C to a various reductions up to 50%. The room temperature tensile deformation was conducted at various strain rates from 10-5/s to 100/s. All rolled steels were fractured in ductile manners with local elongation (necking) at slower strain rate. When strain rate was faster, the local elongation disappeared and the fracture manner was turned to brittle. The strain rate at which fracture mechanism changed from ductile to brittle increased with the increasing of the reduction. On the other hand, the almost fully recrystallized Si steel was fractured in the brittle manner at any strain rate and the transition strain rate was not found. The fractured tensile specimen with no local elongations contains deformation twins; whereas these deformation twins were not observed in the fractured specimen with local elongations. This result indicates that dislocation structure evolved during rolling suppressed the twinning and that the dislocation structure is effective for the enhancement of toughness in Si steel.


2014 ◽  
Vol 915-916 ◽  
pp. 588-592
Author(s):  
Gang Chen ◽  
Wei Chen ◽  
Guo Wei Zhang ◽  
Jing Zhai ◽  
Li Ma

Compression tests of Mg-4Al-3Ca-1.5Zn-1Nd-0.2Mn Magnesium alloy as-extruded had been performed in the compression temperature range from 200°C to 350°C and the strain rate range from 0.001 s1to 1 s1and the flow stress data obtained from the tests were used to develop the power dissipation map, instability map and processing map. The optimum parameters for hot working of the alloy had been determined. According to the processing maps, the most optimal temperature range is 280°C to 350°C and most optimal strain rate range is 0.001 S-1to 1 S-1.


Metals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 629 ◽  
Author(s):  
Tuo Ye ◽  
Yuanzhi Wu ◽  
Wei Liu ◽  
Bin Deng ◽  
Anmin Liu ◽  
...  

The mechanical properties of an extruded 6013-T4 alloy were tested at a temperature range from 25 to 400 °C and strain rate range from 1 × 103 to 5 × 103 s−1. The results demonstrate that the stress level is sensitive to strain rate and temperature. The stress level increases slightly with increasing strain rate and decreases remarkably with increasing temperature. The dislocation and precipitate undergo great changes. When deformed at 25 °C, the density of the dislocation increases with strain and strain rate; which leads to a higher stress level. A great number of needle-like precipitates were observed at samples deformed at 200 °C. It is clear that the density of dislocation increases with strain and strain rate. When impacted at 400 °C, the coarser precipitates were found in the specimen; the density of the dislocation increases with strain and strain rate.


2005 ◽  
Vol 475-479 ◽  
pp. 3489-3492 ◽  
Author(s):  
Se Hyun Ko ◽  
Jin Man Jang ◽  
Won Sik Lee

Al-Mg and Al-Mg-Cu alloys are known well to reveal superplasticity in tension at high temperatures. In this study, deformation behaviors of those alloys nanograined were investigated under compression test at room temperature. During plastic deformation softening phenomena occurred obviously in nanograined Al-1.5wt%Mg and Al-0.7wt%Mg-1.0wt%Cu alloys while slight strain hardening appeared in nanograined pure Al. These results suggest that the softening strongly depends on composition of alloys. The softening takes place over strain rate range from 10-4 up to 10-1.


2012 ◽  
Vol 538-541 ◽  
pp. 1257-1261
Author(s):  
Sheng Li Guo ◽  
Peng Du ◽  
Xiao Ping Wu ◽  
De Fu Li

The hot deformation behavior of Zn91.8-Cu8-Cr0.2 (in wt.%) was investigated by means of hot compression tests in the temperature range of 230-380 °C and strain rate range of 0.01 - 10 s-1. The constitutive equation and processing maps were developed. The influence of strain on the flow stress was studied by considering the effect of the strain on material constants. The stress-strain curves obtained by the constitutive equation are in good agreement with experimental results. The proposed constitutive equations can be used for the analysis problem of hot forming processes. The processing maps have exhibited a domain, which is optimum processing window for hot working, in the temperature range of 310 - 380 °C and strain rate range of 0.01-1 s-1 corresponding to the higher efficiency of power dissipation. The large regime of flow instability is observed at high strain rate. The instability regime should be avoided during hot deformation processing.


Sign in / Sign up

Export Citation Format

Share Document