Mechanical Properties of SiC/FexSiy Composites

2011 ◽  
Vol 236-238 ◽  
pp. 1523-1527 ◽  
Author(s):  
Xiao Meng Zhang ◽  
Shu Feng Ye ◽  
Li Hua Xu ◽  
Peng Qian ◽  
Lian Qi Wei ◽  
...  

The SiC/FexSiycomposites were synthesized by reaction sintering process with iron tailings as raw material and carbon as reductant. The room and high temperature flexural strengths and fracture toughness of composites were studied in this paper. Fracture surfaces were observed by means of a scanning electron microscope (SEM). The results showed that the room temperature flexural strength of SiC/FexSiycomposites changed along with the different contents of FexSiyand sintering temperature. The flexural strength of composites reaches the maximum at 900°C. The correlation between flexural strength and temperature is consistent with curveⅠ.The fracture toughness of composites is related to the content of FexSiy. The fracture behavior of composites is mainly transcrystalline in room temperature and intercrystalline in high temperature.

2012 ◽  
Vol 476-478 ◽  
pp. 1031-1035
Author(s):  
Wei Min Liu ◽  
Xing Ai ◽  
Jun Zhao ◽  
Yong Hui Zhou

Al2O3-TiC-ZrO2ceramic composites (ATZ) were fabricated by hot-pressed sintering. The phases and microstructure of the composites were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The relative density and mechanical properties (flexural strength, fracture toughness and Vicker’s hardness) of the composites were tested. The results show that the microstructure of the composites was the gray core-white rim. With the increase of sintering temperature, the relative density and mechanical properties of the composites increased first and then decreased. The composite sintered at 1705°C has the highest synthetical properties, and its relative density, flexural strength, fracture toughness and Vickers hardness are 98.3%,970MPa,6.0 MPa•m1/2and 20.5GPa, respectively.


2008 ◽  
Vol 368-372 ◽  
pp. 1730-1732 ◽  
Author(s):  
Ping Hu ◽  
Xing Hong Zhang ◽  
Jie Cai Han ◽  
Song He Meng ◽  
Bao Lin Wang

SiC whisker-reinforced ZrB2 matrix ultra-high temperature ceramic were prepared at 2000°C for 1 h under 30MPa by hot pressing and the effects of whisker on flexural strength and fracture toughness of the composites was examined. The flexural strength and fracture toughness are 510±25MPa and 4.05±0.20MPa⋅m1/2 at room temperature, respectively. Comparing with the SiC particles-reinforced ZrB2 ceramic, no significant increase in both strength and toughness was observed. The microstructure of the composite showed that the SiC whisker was destroyed because the SiC whisker degraded due to rapid atom diffusivity at high temperature. The results suggested that some related parameters such as the lower hot-pressing temperature, a short sintering time should be controlled in order to obtain SiC whiskerreinforced ZrB2 composite with high properties.


2016 ◽  
Vol 848 ◽  
pp. 28-31
Author(s):  
Han Jin ◽  
Yong Feng Li ◽  
Zhong Qi Shi ◽  
Hong Yan Xia ◽  
Guan Jun Qiao

Mullite/10 wt. %h-BN composites with 5 wt. % Y2O3 additive were fabricated by pressureless sintering at different temperatures. The densification, phase composition, microstructure, mechanical and dielectric properties of the mullite/h-BN composites were investigated. With the addition of Y2O3, the sintering temperature of the mullite/h-BN composites declined, while the density, mechanical and dielectric properties all increased. The addition of Y2O3 promoted the formation of liquid phase at high temperature, which accelerated the densification. Besides, Y2O3 particles which were located at the grain boundaries inhibited the grain growth of mullite matrix. For the mullite/h-BN composites with Y2O3 additive, the appropriate sintering temperature was about 1600°C. The relative density, flexural strength, fracture toughness and dielectric constant of the Y2O3 doped mullite/h-BN composite sintered at 1600 °C reached 82%, 135 MPa, 2.3 MPa·m1/2 and 4.9, respectively.


2014 ◽  
Vol 540 ◽  
pp. 225-228 ◽  
Author(s):  
Long Ma ◽  
Guo Zhong Li ◽  
Ji Rui Hu

The red mud lightweight insulation brick was prepared by the sintering process as red mud, fly ash, bentonite as the main raw material, adding a certain amount of pore forming agent and fluxing agent. The sintering heat preservation time of red mud insulation brick on the properties was studied. The red mud lightweight insulation brick damage fracture microstructure was analyzed using scanning electron microscope (SEM) and the sintering mechanism was discussed preliminarily. The results show that with sintering temperature of 1100°C heating for 180 minutes, the performance of thermal insulation brick is better. When the heat preservation time extends to continue, the performances of sample remain stable basically.


2010 ◽  
Vol 105-106 ◽  
pp. 218-221 ◽  
Author(s):  
Xuan Liu ◽  
Qiang Xu ◽  
Shi Zhen Zhu

ZrB2-SiC-B4C is sintered at 1700°C by spark plasma sintering process. The effect of B4C content on the mechanical properties and microstructure of ZrB2-SiC based ceramics is studied. The results show that, with the content of B4C increases, the relative density and room-temperature strength decrease in the ZrB2-SiC-B4C composite. The fracture toughness rises at first and then falls down. The high temperature strength increases.


2011 ◽  
Vol 66-68 ◽  
pp. 510-515
Author(s):  
Wen Song Lin ◽  
Ning Xiang Fang

Reaction sintering B4C/SiC ceramics with high density were manufactured. The effect of the carbon content in green bodies on the microstructure and mechanical properties of the ceramics has been studied. Results showed that the carbon content and the value of carbon relative density (ρCRD) in the green bodies were the major factors affected the composition, that is, the free silicon and carbon contents and mechanical behaviors of sintered specimens. The optimal value of ρCRD was gotten at 0.85 g/cm3. The fracture toughness, flexural strength, and hardness of the composites increased with increasing carbon content up to 20 wt.%. The maximum values of fracture toughness of 3.8 MPa∙m1/2, flexural strength of 475 MPa, and hardness of 32.0 GPa were obtained under the following process parameters: value of ρCRD in the green bodies was about 0.85 g/cm3; carbon, B4C and SiC contents in green bodies were 20 wt.%, 30 wt.% and 50 wt.%, respectively; compact pressure was 75 MPa and sintering temperature was 1600°C.


2011 ◽  
Vol 422 ◽  
pp. 561-565 ◽  
Author(s):  
Zhi Hui Li ◽  
Sen Wang ◽  
Jing Li ◽  
Feng Wu

In connection with broken-down mechanics of ladle porous plug well block,with tabular alundum、allitic spinel、industrial chrome oxide as the main raw material and aluminate cement and active α-Al2O3 micro powder as binder,we prepare 9 groups porous plug well block samples,for studying the species of α-Al2O3 micro powder and impact of its addition on the properties of samples.By testing room temperature flexural strength of samples、room temperature compression strength,flexural strength after sintering at 1600°C and heating for 3 hours、compression strength after burning,bulk density and apparent porosity before burning and after burning,thermal shock、high temperature bending strength and other performance indicators.The results show that,adding α-Al2O3 micro powder of multi-peak distribution in the samples,whoes granularity distributes reasonably,may have better effects of padding,and form more uniform intergranular spinel,at the same time,find that the higher the bonding strength between the grains,the higher pyknosis strength of samples,and the performance indicators are excellent.When the addition of α-Al2O3 micro powder of multi-peak distribution are 10%,compression strength of sample after burning is 132MPa,high temperature flexural strength is 14MPa,bulk density is 3.25g/cm3,and apparent porosity is 12%,also,thermal shock stability and other combination properties are the best.To meet the excellent performance that delivery needs and have higher safety factor,we may use corundum-spinel porous plug well block of longer lifespan bonding low cement.


2021 ◽  
Vol 7 (5) ◽  
pp. 56
Author(s):  
Yimin Yang ◽  
Xiaoying Li ◽  
Ziyu Liu ◽  
Dianjun Hu ◽  
Xin Liu ◽  
...  

Nanoparticles prepared by the coprecipitation method were used as raw materials to fabricate Y3Fe5O12 (YIG) ceramics by air pressureless sintering. The synthesized YIG precursor was calcinated at 900–1100 °C for 4 h in air. The influences of the calcination temperature on the phase and morphology of the nanopowders were investigated in detail. The powders calcined at 1000–1100 °C retained the pure YIG phase. YIG ceramics were fabricated by sintering at 1200–1400 °C for 10 h, and its densification behavior was studied. YIG ceramics prepared by air sintering at 1250 °C from powders calcinated at 1000 °C have the highest in-line transmittance in the range of 1000-3000 nm. When the sintering temperature exceeds 1300 °C, the secondary phase appears in the YIG ceramics, which may be due to the loss of oxygen during the high-temperature sintering process, resulting in the conversion of Fe3+ into Fe2+.


1985 ◽  
Vol 58 ◽  
Author(s):  
A. Brown ◽  
D. Raybould

ABSTRACTIn recent years, interest in high temperature aluminum alloys has increased. However, nearly all the data available is for simple extrusions. This paper looks at the properties of sheet made from a rapidly solidified Al-10Fe-2.5V-2Si alloy. The sheet is made by direct forging followed by hot rolling, this is readily scalable, so allowing the production of large sheet. The room temperature strength and fracture toughness of the sheet are comparable to those of 2014-T6. The high temperature strength, specific stiffness and corrosion resistance are excellent. Recently, improved thermomechanical processing and new alloys have allowed higher strengths and fracture toughness values to be obtained.


2008 ◽  
Vol 40 (2) ◽  
pp. 117-122 ◽  
Author(s):  
K. Maca ◽  
V. Pouchly ◽  
A.R. Boccaccini

This article summarizes the usage of high-temperature dilatometry in ceramic processing and powder technology with special attention on the description of the sintering process. A practical method for transformation of dilatometric shrinkage data into densification curves (the dependence of the sample density on sintering temperature or time) is described in detail. A new automatic procedure to recalculate sintering shrinkage data allowing the plot of the densification curve has been developed, which is presented here.


Sign in / Sign up

Export Citation Format

Share Document